




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1回归分析的基本思想及其初步应用学习目标1.了解随机误差、残差、残差图的概念.2.会通过分析残差判断线性回归模型的拟合效果.3.掌握建立线性回归模型的步骤知识点一线性回归模型思考某电脑公司有5名产品推销员,其工作年限与年推销金额数据如下表:推销员编号12345工作年限x/年35679推销金额y/万元23345请问如何表示推销金额y与工作年限x之间的相关关系?y关于x的线性回归方程是什么?答案画出散点图,由图可知,样本点散布在一条直线附近,因此可用回归直线表示变量之间的相关关系设所求的线性回归方程为x,则0.5,0.4.所以年推销金额y关于工作年限x的线性回归方程为0.5x0.4.梳理(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系(2)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法(3)对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn),回归直线ybxa的斜率和截距的最小二乘估计公式分别为, ,其中(,)称为样本点的中心(4)线性回归模型ybxae,其中a和b是模型的未知参数,e称为随机误差,自变量x称为解释变量,因变量y称为预报变量知识点二线性回归分析具有相关关系的两个变量的线性回归方程为x.思考1预报变量与真实值y一样吗?答案不一定思考2预报值与真实值y之间误差大了好还是小了好?答案越小越好梳理(1)残差平方和法iyiiyixi (i1,2,n)称为相应于点(xi,yi)的残差残差平方和(yii)2越小,模型的拟合效果越好(2)残差图法残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高(3)利用相关指数R2刻画回归效果其计算公式为:R21,其几何意义:R2越接近于1,表示回归的效果越好知识点三建立回归模型的基本步骤1确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量2画出解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)3由经验确定回归方程的类型(如观察到数据呈线性关系,则选用线性回归方程)4按一定规则(如最小二乘法)估计回归方程中的参数5得出结果后分析残差图是否有异常(如个别数据对应残差过大,残差呈现不随机的规律性等)若存在异常,则检查数据是否有误,或模型是否合适等1求线性回归方程前可以不进行相关性检验()2在残差图中,纵坐标为残差,横坐标可以选为样本编号()3利用线性回归方程求出的值是准确值()类型一求线性回归方程例1某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:x681012y2356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程x;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力考点线性回归方程题点求线性回归方程解(1)如图:(2)iyi6283105126158,9,4,6282102122344,0.7,40.792.3,故线性回归方程为0.7x2.3.(3)由(2)中线性回归方程可知,当x9时,0.792.34,预测记忆力为9的同学的判断力约为4.反思与感悟(1)求线性回归方程的基本步骤列出散点图,从直观上分析数据间是否存在线性相关关系计算:,iyi.代入公式求出x中参数,的值写出线性回归方程并对实际问题作出估计(2)需特别注意的是,只有在散点图大致呈线性时,求出的回归方程才有实际意义,否则求出的回归方程毫无意义跟踪训练1假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计数据:x23456y2.23.85.56.57.0由此资料可知y对x呈线性相关关系(1)求线性回归方程;(2)求使用年限为10年时,该设备的维修费用为多少?考点线性回归方程题点求线性回归方程解(1)由上表中的数据可得4,5,90,iyi112.3,1.23,51.2340.08.线性回归方程为1.23x0.08.(2)当x10时,1.23100.0812.38.即使用年限为10年时,该设备的维修费用约为12.38万元类型二回归分析例2在一段时间内,某种商品的价格x元和需求量y件之间的一组数据为:x1416182022y1210753求出y对x的线性回归方程,并说明拟合效果的程度考点残差分析与相关指数题点残差及相关指数的应用解(1416182022)18,(1210753)7.4.1421621822022221 660,iyi14121610187205223620,可得回归系数1.15,所以7.41.151828.1,所以线性回归方程为1.15x28.1.列出残差表:yii00.30.40.10.2yi4.62.60.42.44.4则(yii)20.3,(yi)253.2.R210.994.所以回归模型的拟合效果很好反思与感悟(1)该类题属于线性回归问题,解答此类题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R2来分析函数模型的拟合效果,在此基础上,借助线性回归方程对实际问题进行分析(2)刻画回归效果的三种方法残差图法,残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适残差平方和法:残差平方和(yii)2越小,模型的拟合效果越好相关指数法:R21越接近1,表明回归的效果越好跟踪训练2关于x与y有如下数据:x24568y3040605070有如下的两个线性模型:(1)6.5x17.5;(2)7x17.试比较哪一个拟合效果更好考点残差分析与相关指数题点残差及相关指数的应用解由(1)可得yii与yi的关系如下表:yii0.53.5106.50.5yi201010020(yii)2(0.5)2(3.5)2102(6.5)20.52155,(yi)2(20)2(10)2102022021 000.R110.845.由(2)可得yii与yi的关系如下表:yii15893yi201010020(yii)2(1)2(5)282(9)2(3)2180,(yi)2(20)2(10)2102022021 000.R110.82.由于R0.845,R0.82,0.8450.82,RR.(1)的拟合效果好于(2)的拟合效果例3某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值(xi)2(wi)2(xi)(yi)(wi)(yi)46.65636.8289.81.61 469108.8表中wi,i.(1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z0.2yx.根据(2)的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线vu的斜率和截距的最小二乘估计分别为, .考点非线性回归分析题点非线性回归分析解(1)由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型(2)令w,先建立y关于w的线性回归方程由于68,563686.8100.6,所以y关于w的线性回归方程为100.668w,因此y关于x的回归方程为100.668.(3)由(2)知,当x49时,年销售量y的预报值100.668576.6,年利润z的预报值576.60.24966.32.根据(2)的结果知,年利润z的预报值0.2(100.668)xx13.620.12.所以当6.8,即x46.24时,取得最大值故年宣传费为46.24千元时,年利润的预报值最大反思与感悟求非线性回归方程的步骤(1)确定变量,作出散点图(2)根据散点图,选择恰当的拟合函数(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程(4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果(5)根据相应的变换,写出非线性回归方程跟踪训练3在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521试建立y与x之间的回归方程考点非线性回归分析题点非线性回归分析解由数值表可作散点图如图,根据散点图可知y与x近似地呈反比例函数关系,设,令t,则kt,原数据变为:t4210.50.25y1612521由置换后的数值表作散点图如下:由散点图可以看出y与t呈近似的线性相关关系,列表如下:itiyitiyit1416641622122443155140.5210.2550.2510.250.062 57.753694.2521.312 5所以1.55,7.2.所以4.134 4,0.8.所以4.134 4t0.8.所以y与x之间的回归方程是0.8.1下列两个变量之间的关系不是函数关系的是()A角度和它的余弦值B正方形的边长和面积C正n边形的边数和内角度数和D人的年龄和身高考点回归分析题点回归分析的概念和意义答案D解析函数关系就是变量之间的一种确定性关系A,B,C三项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f()cos ,g(a)a2,h(n)(n2).D选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选D.2设有一个线性回归方程21.5x,当变量x增加1个单位时()Ay平均增加1.5个单位By平均增加2个单位Cy平均减少1.5个单位Dy平均减少2个单位考点线性回归分析题点线性回归方程的应用答案C解析由回归方程中两个变量之间的关系可以得到3如图四个散点图中,适合用线性回归模型拟合其中两个变量的是()A B C D考点回归分析题点回归分析的概念和意义答案B解析由图易知两个图中样本点在一条直线附近,因此适合用线性回归模型4某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x16171819y50344131由上表可得回归直线方程x中的5,据此模型预测当零售价为14.5元时,每天的销售量为()A51个 B50个C54个 D48个考点线性回归分析题点线性回归方程的应用答案C解析由题意知17.5,39,代入回归直线方程得126.5,126.514.5554,故选C.5已知x,y之间的一组数据如下表:x0123y1357(1)分别计算:,x1y1x2y2x3y3x4y4,xxxx;(2)已知变量x与y线性相关,求出线性回归方程考点线性回归方程题点求线性回归方程解(1)1.5,4,x1y1x2y2x3y3x4y40113253734,xxxx0212223214.(2)2, 421.51,故线性回归方程为2x1.回归分析的步骤:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程x);(4)按一定规则估算回归方程中的参数;(5)得出结果后分析残差图是否有异常(个别数据对应的残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误或模型是否合适等一、选择题1对于线性回归方程x (0),下列说法错误的是()A当x增加一个单位时,的值平均增加个单位B点(,)一定在x所表示的直线上C当xt时,一定有ytD当xt时,y的值近似为t 考点线性回归分析题点线性回归方程的应用答案C解析线性回归方程是一个模拟函数,它表示的是一系列离散的点大致所在直线的位置及其大致变化规律,所以有些散点不一定在回归直线上2给定x与y的一组样本数据,求得相关系数r0.690,则()Ay与x的线性相关性很强By与x的相关性很强Cy与x正相关Dy与x负相关考点线性相关系数题点线性相关系数的应用答案D解析因为r0,0 B.0,0C.0 D.0,0考点线性回归分析题点线性回归方程的应用答案B解析作出散点图如下:观察图象可知,回归直线x的斜率0.故0,0.7已知某地的财政收入x与支出y满足线性回归方程ybxae(单位:亿元),其中b0.8,a2,|e|0.5,如果今年该地区的财政收入为10亿元,那么年支出预计不会超过()A9亿元 B10亿元C9.5亿元 D10.5亿元考点残差分析与相关指数题点残差及相关指数的应用答案D解析y0.8102e10e10.5.8下列数据符合的函数模型为()x12345678910y22.6933.383.63.844.084.24.3A.y2x By2exCy2Dy2ln x考点非线性回归分析题点非线性回归分析答案D解析分别将x值代入解析式判断知满足y2ln x.9为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用最小二乘法求得的回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法中正确的是()Al1与l2有交点(s,t)Bl1与l2相交,但交点不一定是(s,t)Cl1与l2必定平行Dl1与l2必定重合考点线性回归方程题点样本点中心的应用答案A解析回归直线l1,l2都过样本点的中心(s,t),但它们的斜率不确定,故选项A正确二、填空题10在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为_考点线性相关系数题点线性相关系数的应用答案1解析根据样本相关系数的定义可知,当所有样本点都在一条直线上时,相关系数为1.11若一个样本的总偏差平方和为80,残差平方和为60,则相关指数R2为_考点线性相关系数题点线性相关系数的应用答案0.25解析R210.25.12已知一个线性回归方程为1.5x45,x1,5,7,13,19,则_.考点线性回归方程题点样本点中心的应用答案58.5解析9,且1.5x45,1.594558.5.13在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线yebxa的周围令ln y,求得线性回归方程为0.25x2.58,则该模型的回归方程为_考点非线性回归分析题点非线性回归分析答案ye0.25x2.58解析因为0.25x2.58,ln y,所以ye0.25x2.58.三、解答题14某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程x,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:,)考点线性回归方程题点求线性回归方程解(1)散点图如图(2)由表中数据得iyi52.5,3.5,3.5,54,所以0.7,所以 3.50.73.51.05.所以0.7x1.05.回归直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海洋油气开采模块项目发展计划
- 夏季城市形态与公园释放能力耦合机制研究
- 2025年高性能传输线缆项目发展计划
- 消防与给排水监理细则
- 湘艺版音乐九年级上册第四单元《鼓的语言》教案
- 在线教育重塑学习体验的新模式
- 教育机器人技术的专利布局与战略
- 教育金融与基金市场的关系及其影响
- 基于知识经济的医药冷链人才能力培育及路径选择
- 教育科技的发展与教师素质的现代化提升
- 2025年北京市高考英语试卷真题(含答案解析)
- 日本所有番号分类
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 《经济学基础》课程标准
- 降低手术患者术中低体温发生率
- 疼痛诊疗学课程教学大纲
- 患者跌倒坠床风险评估流程防范措施
- 病理生理学试题及答案
- 2023年保险知识竞赛题库
- GB/T 19851.11-2005中小学体育器材和场地第11部分:合成材料面层运动场地
- GB/T 16672-1996焊缝工作位置倾角和转角的定义
评论
0/150
提交评论