




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章,概率,2.2.2事件的独立性,学习目标1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.,1,预习导学挑战自我,点点落实,2,课堂讲义重点难点,个个击破,3,当堂检测当堂训练,体验成功,知识链接1.3张奖券只有1张能中奖,3名同学有放回地抽取.事件A为“第一名同学没有抽到中奖奖券”,事件B为“第三名同学抽到中奖奖券”,事件A的发生是否会影响B发生的概率?答因抽取是有放回的,所以A的发生不会影响B发生的概率,事件A和事件B相互独立.,2.互斥事件与相互独立事件有什么区别?答两个事件相互独立与互斥的区别:两个事件互斥是指两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响.,预习导引1.相互独立的概念事件A,B相互独立:事件A是否发生对事件B发生的概率,即P(B|A),这时,我们称两个事件A,B,并把两个事件叫做相互独立事件,且有P(AB).,没有影响,P(B),相互独立,P(A)P(B),2.相互独立的性质一般地,如果事件A与B相互独立,那么也相互.如果事件A1,A2,An彼此独立,则P(A1A2An).,独立,P(A1)P(A2)P(An),要点一相互独立事件的判断例1从一副拿走了大小王的扑克牌(52张)中任抽一张,设A“抽得老K”,B“抽得红牌”,判断事件A与B是否相互独立?是否互斥?是否对立?为什么?解由于事件A为“抽得老K”,事件B为“抽得红牌”,故抽得红牌中有可能抽到红桃K或方块K,即有可能抽到老K,,故事件A,B有可能同时发生,显然它们不是互斥事件,更不是对立事件,以下考虑它们是否互为独立事件:,事件AB即为“既抽得老K又抽得红牌”,亦即“抽得红桃老K或方块老K”,,从而有P(A)P(B)P(AB),因此A与B互为独立事件.,规律方法对于事件A,B,在一次试验中,A,B如果不能同时发生,则称A,B互斥.一次试验中,如果A,B两个事件互斥且A,B中必然有一个发生,则称A,B对立,显然A为一个必然事件.A,B互斥则不能同时发生,但有可能同时不发生.两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响.,跟踪演练1(1)甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B()A.相互独立但不互斥B.互斥但不相互独立C.相互独立且互斥D.既不相互独立也不互斥,解析对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件.答案A,(2)掷一枚正方体骰子一次,设事件A:“出现偶数点”,事件B:“出现3点或6点”,则事件A,B的关系是()A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥,解析事件A2,4,6,事件B3,6,事件AB6,基本事件空间1,2,3,4,5,6.,即P(AB)P(A)P(B),因此,事件A与B相互独立.当“出现6点”时,事件A,B同时发生,所以A,B不是互斥事件.答案B,要点二相互独立事件同时发生的概率例2甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;解设“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,,2人都射中目标的概率为P(AB)P(A)P(B)0.80.90.72.,(2)2人中恰有1人射中目标的概率;解“2人各射击1次,恰有1人射中目标”包括两种情况:,所求的概率为,0.8(10.9)(10.8)0.90.080.180.26.,(3)2人至少有1人射中目标的概率;解“2人至少有1人射中”包括“2人都中”和“2人有1人射中”2种情况,,(4)2人至多有1人射中目标的概率.解“2人至多有1人射中目标”包括“有1人射中”和“2人都未射中”两种情况,,跟踪演练2甲、乙两人破译一密码,他们能破译的概率分别为.求:(1)两人都能破译的概率;解设“甲能破译”为事件A,“乙能破译”为事件B,,(2)两人都不能破译的概率;,(3)恰有一人能破译的概率;,(4)至多有一人能破译的概率.,要点三相互独立事件概率的综合应用例3某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(1)三科成绩均未获得第一名的概率是多少?解分别记该生语、数、英考试成绩排名全班第一的事件为A,B,C,则A,B,C两两相互独立且P(A)0.9,P(B)0.8,P(C)0.85.,1P(A)1P(B)1P(C)(10.9)(10.8)(10.85)0.003,所以三科成绩均未获得第一名的概率是0.003.,(2)恰有一科成绩未获得第一名的概率是多少?解“恰有一科成绩未获得第一名”,1P(A)P(B)P(C)P(A)1P(B)P(C)P(A)P(B)1P(C)(10.9)0.80.850.9(10.8)0.850.90.8(10.85)0.329,所以恰有一科成绩未获得第一名的概率是0.329.,规律方法求复杂事件的概率,应先列出题中涉及的各事件,并用适当的符号表示,再理清各事件之间的关系,最后根据事件之间的关系选取相应的公式进行计算.,跟踪演练3某机械厂制造一种汽车零件,已知甲机床的正品率是0.96,乙机床的次品率是0.05,现从它们制造的产品中各任意抽取一件,试求:(1)两件产品都是正品的概率;解用A表示“从甲机床生产的产品中抽得正品”,用B表示“从乙机床生产的产品中抽得正品”,用C表示“抽得的两件产品中恰有一件是正品”,用D表示“抽得的两件产品中至少有一件正品”,,(1)由题意知,A与B是相互独立事件,所以两件都是正品的概率为P(AB)P(A)P(B)0.960.950.912.,(2)恰有一件是正品的概率;,0.960.050.040.950.086.,(3)至少有一件正品的概率.解由于事件AB与C互斥,所以P(D)P(AB)CP(AB)P(C)0.9120.0860.998.,1.坛子中放有3个白球,2个黑球,从中进行不放回地取球2次,每次取一球,用A1表示第一次取得白球,A2表示第二次取得白球,则A1和A2是()A.互斥的事件B.相互独立的事件C.对立的事件D.不相互独立的事件,1,2,3,4,1,2,3,4,即A1发生的结果对A2发生的结果有影响,A1与A2不是相互独立事件.答案D,1,2,3,4,2.甲、乙、丙三人独立地去译一个密码,分别译出的概率为则此密码能译出的概率是(),解析用A,B,C分别表示甲、乙、丙三人破译出密码,,1,2,3,4,答案C,3.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()A.p1p2B.p1(1p2)p2(1p1)C.1p1p2D.1(1p1)(1p2),1,2,3,4,解析恰好有1人解决可分为甲解决乙没解决、甲没解决乙解决.这两个事件显然是互斥的.所以恰好有1人解决这个问题的概率为p1(1p2)p2(1p1).故选B.答案B,1,2,3,4,4.某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;解设甲、乙、丙当选的事件分别为A,B,C,,1,2,3,4,(1)因为事件A,B,C相互独立,所以恰有一名同学当选的概率为,1,2,3,4,1,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版治疗协议书
- 2025年事业单位工勤技能-河北-河北水工监测工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河北-河北假肢制作装配工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏农业技术员五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-新疆-新疆水生产处理工三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西理疗技术员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西林木种苗工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西堤灌维护工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西农业技术员五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-安徽-安徽计算机文字录入处理员四级(中级工)历年参考题库典型考点含答案解析
- 建筑施工现场签证单(模板)
- GBZ(卫生) 49-2014职业性噪声聋的诊断
- GB/T 9729-2007化学试剂氯化物测定通用方法
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 13560-2017烧结钕铁硼永磁材料
- 三视图及尺寸标注课件
- 混凝土配合比验证检验委托书模板
- 住房公积金投诉申请书
- 众辰变频器说明书3400
- 小学教师量化考核表
- 《财务管理》课程教学实施方案
评论
0/150
提交评论