




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二篇重点专题分层练,中高档题得高分,第16练基本初等函数、函数的应用小题提速练,明晰考情1.命题角度:考查二次函数、分段函数、幂函数、指数函数、对数函数的图象与性质;以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;能利用函数解决简单的实际问题.2.题目难度:中档偏难.,核心考点突破练,栏目索引,易错易混专项练,高考押题冲刺练,考点一基本初等函数的图象与性质,方法技巧(1)指数函数的图象过定点(0,1),对数函数的图象过定点(1,0).(2)应用指数函数、对数函数的单调性,要注意底数的范围,底数不同的尽量化成相同的底数.(3)解题时要注意把握函数的图象,利用图象研究函数的性质.,核心考点突破练,答案,解析,3y3y.,2x5z,,3y2x1时,lnxxa(x0)无实根,此时要使(x1)(xa)0(x0)有2个实根,应有a0且a1,即a0且a1,综上得实数a的取值范围是a|a1或0a1.,考点三函数的综合应用,方法技巧(1)函数实际应用问题解决的关键是通过读题建立函数模型,要合理选取变量,寻找两个变量之间的关系.(2)基本初等函数与不等式的交汇问题是高考的热点,突破此类问题的关键在于准确把握函数的图象和性质,结合函数的图象寻求突破点.,答案,解析,9.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是_年.(参考数据:lg1.120.05,lg1.30.11,lg20.30),2019,解析设2015年后的第n年该公司投入的研发资金为y万元,则y130(112%)n.,两边取对数,得nlg1.12lg2lg1.3,,从2019年开始,该公司投入的研发资金开始超过200万元.,答案,解析,10.已知函数f(x)ex1,g(x)x24x3,若存在f(a)g(b),则实数b的取值范围为_.,解析函数f(x)ex1的值域为(1,),g(x)x24x3的值域为(,1,若存在f(a)g(b),则需g(b)1,即b24b31,,答案,解析,当x0时,f(x)2,,即2,可转化为4,解得0x4.,答案,解析,易错易混专项练,答案,解析,1.如果函数ya2x2ax1(a0且a1)在区间1,1上的最大值是14,则a的值为_.,解析令axt(t0),则ya2x2ax1t22t1(t1)22.,所以ymax(a1)2214,解得a3(负值舍去);,1,),答案,解析,解析令h(x)xa,则g(x)f(x)h(x).在同一坐标系中画出yf(x),yh(x)图象的示意图,如图所示.,若g(x)存在2个零点,则yf(x)的图象与yh(x)的图象有2个交点,平移yh(x)的图象可知,当直线yxa过点(0,1)时,有2个交点,此时10a,a1.当yxa在yx1上方,即a1时,仅有1个交点,不符合题意;当yxa在yx1下方,即a1时,有2个交点,符合题意.综上,a的取值范围为1,).,答案,解析,2,0,解析由y|f(x)|的图象知,当x0时,只有当a0时,才能满足|f(x)|ax.当x0时,y|f(x)|x22x|x22x.故由|f(x)|ax,得x22xax.当x0时,不等式为00成立.当x0时,不等式等价于x2a.因为x22,所以a2.综上可知,a2,0.,答案,解析,1,解题秘籍(1)基本初等函数的图象可根据特殊点及函数的性质进行判定.(2)与指数函数、对数函数有关的复合函数的性质,可使用换元法,解题中要优先考虑函数的定义域.(3)数形结合是解决方程、不等式的重要工具,指数函数、对数函数的底数要讨论.,高考押题冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,cab,1.设a20.3,b30.2,c70.1,则a,b,c的大小关系为_.解析由已知得a80.1,b90.1,c70.1,构造幂函数yx0.1,根据幂函数yx0.1在区间(0,)上为增函数,得ca0,c0,c0;a0,c0;a0,b0,ct1)且t11,t21,当t11时,t1f(x)有一解;当t21时,t2f(x)有两解.当a1时,只有一个零点.综上可知,当a1时,函数g(x)f(f(x)a有三个不同的零点.,2,解析当x0时,yf(f(x)1f(2x)1log22x1x1,令x10,则x1,显然与x0矛盾,所以当x0时,yf(f(x)1无零点.当x0时,分两种情况:当x1时,log2x0,yf(f(x)1f(log2x)1log2(log2x)1,令log2(log2x)10,得log2x2,解得x4;当0x1时,log2x0,yf(f(x)1f(log2x)11x1,令x10,解得x1.综上,函数yf(f(x)1的零点个数为2.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装饰公司中秋放活动方案
- 韩国物流考试题及答案
- 光学加工考试题及答案
- 关于盐酸考试题及答案
- 狗狗培训考试题及答案
- 跟单员考试题目及答案
- 企业财务管理报表自动生成工具
- (正式版)DB15∕T 3397-2024 《西辽河灌区盐碱化耕地地力提升技术规程》
- 古籍数字化保护承诺书6篇范文
- 电焊中级考试题及答案
- 宠物经济下的宠物食品包装创新研究报告:2025年市场潜力分析
- 2025年关于广告设计合同格式范本
- 临床基于MDT平台下的“5A”护理模式在改善脑卒中后顽固性呃逆患者中应用
- 基础电工安全培训课件
- 2025年财会类资产评估师资产评估基础-资产评估基础参考题库含答案解析(5卷)
- 法律顾问合同协议书模板
- 2025年淮南市潘集区公开招聘社区“两委”后备干部10名考试参考试题及答案解析
- 河北省琢名小渔名校联考2025-2026学年高三上学期开学调研检测数学(含答案)
- (2025)防溺水知识竞赛题库含答案(完整版)
- 2025年校招:财务岗试题及答案
- 项目工程审计整改方案(3篇)
评论
0/150
提交评论