




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课时函数的奇偶性与周期性,2014高考导航,本节目录,教材回顾夯实双基,考点探究讲练互动,名师讲坛精彩呈现,知能演练轻松闯关,基础梳理1.函数的奇偶性,f(x)f(x),y轴,f(x)f(x),原点,思考探究奇、偶函数的定义域有何特点?提示:若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称反之,若函数的定义域不关于原点对称,则该函数无奇偶性,2.周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)_,那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个_的正数,那么这个_正数就叫做f(x)的最小正周期,f(x),最小,最小,课前热身,解析:选D.由函数奇偶性的定义知A、B项为奇函数,C项为非奇非偶函数,D项为偶函数,答案:B4.若f(x)(xa)(x4)为偶函数,则实数a_解析:由f(x)(xa)(x4),得f(x)x2(a4)x4a,若f(x)为偶函数,则a40,即a4.答案:45.已知函数f(x),对xR,都有f(x4)f(x),且x(0,2)时,f(x)2012x2,则f(2013)_答案:2012,【题后感悟】(1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(x)的关系,得出结论,也可以利用图象作判断,跟踪训练,【答案】(1)B(2)1,1),【规律小结】函数奇偶性的应用:(1)已知函数的奇偶性求函数的解析式抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f(x)的方程,从而可得f(x)的解析式(2)已知带有字母参数的函数表达式及奇偶性求参数时,常常采用待定系数法:利用f(x)f(x)0产生关于字母的恒等式由系数的对等性可得知字母的值(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反,跟踪训练,答案:(1)x2x(2)2,【答案】B,跟踪训练3.(2013阜阳月考)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x2)f(x)当x0,2时,f(x)2xx2.(1)求证:f(x)是周期函数;(2)当x2,4时,求f(x)的解析式;(3)计算f(0)f(1)f(2)f(2013)解:(1)证明:f(x2)f(x),f(x4)f(x2)f(x)f(x)是周期为4的周期函数,(2)x2,4,x4,2,4x0,2,f(4x)2(4x)(4x)2x26x8.又f(4x)f(x)f(x),f(x)x26x8,即f(x)x26x8,x2,4(3)f(0)0,f(2)0,f(1)1,f(3)1.又f(x)是周期为4的周期函数,f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(2008)f(2009)f(2010)f(2011)0,又f(2012)f(2013)f(0)f(1)1,f(0)f(1)f(2)f(2013)1.,3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也真利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性4.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域上的奇偶性,难题易解,【答案】2,跟踪训练4.(2012高考上海卷)已知yf(x)是奇函数若g(x)f(x)2且g(1)1,则g(1)_解析:由g(x)f(x)2,且g(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46263-2025消费品质量分级家用电器熨烫器具
- 2025湖南怀化市会同县招聘事业单位工作人员7人模拟试卷及答案详解(名校卷)
- 2025年福建省福清市中医院招聘18人模拟试卷及答案详解(全优)
- 2025年福建省泉州文旅集团招聘3人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025江西中小学教师招聘考试南昌考区模拟试卷及一套答案详解
- 2025年临沂兰陵县教育系统部分事业单位公开招聘教师(5人)模拟试卷带答案详解
- 2025年河南中医药大学招聘高层次人才83人+考前自测高频考点模拟试题及完整答案详解
- 2025广西贵港市公安局港北分局招聘警务辅助人员62人考前自测高频考点模拟试题及参考答案详解
- 2025河南新乡事业单位招录203人考前自测高频考点模拟试题及1套完整答案详解
- 2025内蒙古土地资源收储投资(集团)有限公司常态化招聘急需紧缺专业人员50人模拟试卷及答案详解(考点梳理)
- 江浙皖高中(县中)发展共同体2025-2026学年高三上学期10月联考技术试题(含答案)
- 2025贵州盐业(集团)遵义有限责任公司招聘15人笔试备考试题及答案解析
- EMS供应商对比方案报告
- 神奇的加密术教学设计-2025-2026学年初中数学北师大版2024八年级上册-北师大版2024
- 《现代施工工程机械》课件(共十四章)
- 价格波动对利润影响分析-洞察及研究
- DZ∕T 0338.1-2020 固体矿产资源量估算规程 第1部分 通则(正式版)
- 2024届唐山市高三高考一模(第一次模拟演练)语文试卷(含标准答案)
- 空调维保投标方案(技术方案)
- 光伏电站全面巡视标准化作业指导书
- 人教版七-九年级课文按文体分类目录
评论
0/150
提交评论