免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_函数的种类从初中我们就开始学习函数,函数的种类有很多很多种从初中学的简单的一次函数、二次函数、正比例函数、反比例函数、三角函数(正弦、余弦、正切是初中所学的)到高中现在所学的指数函数、对数函数和即将要学的三角函数余切的难度渐渐在增强,下面我就来介绍一下函数的类型:一次函数一般地,形如y=kx+b(k,b是常数,k0)的函数叫做一次函数。其中x是自变量,y是因变量,k为一次项系数,y是x的函数。其图像为一条直线。当b=0时,y=kx+b即y=kx,原函数变为正比例函数,其函数图像为一条通过原点的直线。所以说正比例函数是一种特殊的一次函数,但一次函数不一定是正比例函数。二次函数二次函数的基本表示形式为y=ax+bx+c(a0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数表达式y=ax+bx+c(且a0)的定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。正比例函数一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k0)(简称f(x)),那么y就叫做x的正比例函数。 正比例函数属一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k0)简称f(x)(),那么y就叫做x的正比例函数。 正比例函数属一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数) 当K0时(一三象限),K的绝对值越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大 当K0时(一三象限),K的绝对值越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大 当K0且a1) (xR)的函数叫做指数函数(exponential function) 。也就是说以指数为自变量,底数为大于0且不等于1常量的函数称为指数函数,它是初等函数中的一种。对数函数对数的定义:一般地,如果ax=N(a0,且a1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a0,且a1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。当然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学四年级科学上学期实验操作培训试卷
- 特种设备重大事故隐患判定标准培训试题
- 初中实验室工作计划
- 2024-2025 学年成都市小学五年级语文期中易错点突破模拟卷及答案
- 2025年高中三年级语文上学期期末冲刺试卷
- 2025年顶管施工试题及答案
- 2025年大学实验课试题及答案
- 2025年国家公务员录用考试行测数字推理题目大汇编
- 人教版物理八年级上册6 2密度学案
- 2025年贵州省公务员考试申论模拟测试卷
- 新能源汽车创新创业计划书范文
- 隐球菌肺部感染临床诊疗要点
- 高压灭菌器管理制度
- UbD理论在高中化学教学中的实践与应用研究
- 2025年社区治理与服务考试试题及答案
- 健康史评估的试题及答案
- 2015海湾消防GST-QKP04、GST-QKP04-2 气体灭火控制器安装使用说明书
- 无机非金属面板保温装饰板外墙外保温系统应用技术规程DB21∕T 3397-2021
- 钢轨探伤发展历程目录一国外钢轨探伤发展二我国钢轨探伤发展
- 部队工程保密协议书
- 物理课程标准2025解读
评论
0/150
提交评论