




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面与平面平行的判定,2.2.2,复习回顾:,平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,(2)直线与平面平行的判定定理。,(1)定义法;,1.到现在为止,我们一共学习过几种判断直线与平面平行的方法呢?,线线平行线面平行,(1)平行,(2)相交,/,怎样判定平面与平面平行呢?,2.平面与平面有几种位置关系?分别是什么?,问题:,(1)三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗?(2)三角板的两条边所在直线分别与桌面平行,情况又如何呢?,观察:,当三角板的两条边所在直线分别与桌面平行时,这个三角板所在平面与桌面平行。,结论:,情景引入:,(1)中的平面,不一定平行。如图,借助长方体模型,平面ABCD中直线AD平行平面BCCB,但平面ABCD与平面BCCB不平行。,结论:,()平面内有一条直线与平面平行,平行吗?,探究:,结论:,(2)分两种情况讨论:,如果平面内的两条直线是平行直线,平面与平面不一定平行。如图,ADPQ,AD平面BCCB,PQ平面BCCB,但平面ABCD与平面BCCB不平行。,P,Q,()平面内有两条直线与平面平行,平行吗?,探究:,两条相交直线才是关键,如图,AC与BD相交,AC平面ABCD,BD平面ABCD,在平面ABCD上可以找到两个相交直线AC和BD与AC和BD分别平行,显然平面ABCD与平面ABCD平行。,如果平面内的两条直线是相交的直线,两个平面是不是一定平行?,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,两个平面平行的判定定理:,线不在多重在相交,符号表示:,,,图形表示:,线面平行面面平行,总结归纳:,思考:由直线与平面平行的判定定理,“a,b”,又可用什么条件替代?由此可得什么推论?,推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.,判断下列命题是否正确,并说明理由(1)若平面内的两条直线分别与平面平行,则与平行;(2)若平面内有无数条直线分别与平面平行,则与平行;(3)平行于同一直线的两个平面平行;(4)两个平面分别经过两条平行直线,这两个平面平行;(5)过已知平面外一条直线,必能作出与已知平面平行的平面,小试:,例1、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1/平面C1BD,证明:ABCDA1B1C1D1为正方体,D1C1AB,D1C1AB,D1C1BA是平行四边形,D1AC1B,,又D1A平面C1BD,C1B平面C1BD.,由直线与平面平行的判定,可知,同理D1B1平面C1BD,又D1AD1B1=D1,所以,平面AB1D1平面C1BD。,D1A平面C1BD,变式、正方体ABCDA1B1C1D1中,E、F、G分别是棱BC、C1D1、B1C1的中点。求证:面EFG/平面BDD1B1.,分析:由FGB1D1易得FG平面BDD1B1同理GE平面BDD1B1FGGEG故得面EFG/平面BDD1B1,G,线线平行线面平行面面平行,第一步:在一个平面内找出两条相交直线;,第二步:证明两条相交直线分别平行于另一个平面。,第三步:利用判定定理得出结论。,证明两个平面平行的一般步骤:,方法总结,已知正方体ABCD-A1B1C1D1,P,Q,R,分别为A1A,AB,AD的中点。求证:平面PQR平面CB1D1.,分析:连结A1B,PQA1BA1BCD1故PQCD1同理可得,,课堂练习,小结:,1.证明面面平行的方法(1)面面平行的定义,(两个平面没有公共点)(2)面面平行的判定定理,(一个平面内两条相交直线与另一个平面分别平行)(3)面面平行判定定理的推论,(一个平面的两条相交直线与另一个平面的两条直线平行),2.面面平行判定定理的应用:要证面面平行,需要证线面平行,而要证线面平行,一定要证线线平行。在立体几何中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025杭州青少年活动中心招聘工勤岗位工作人员20人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025北京通建信系统有限公司潍坊分公司招聘20人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年浙能武威能源有限公司招聘模拟试卷及完整答案详解一套
- 2025年编导英语笔试真题及答案
- 潜水模拟考试题及答案
- 2025江苏南京市建邺区平安联盟工作辅助人员招聘42人(三)考前自测高频考点模拟试题及参考答案详解
- 人防设备长期维护管理方案
- 2025福建福州市体育工作大队招聘食堂小工2人考前自测高频考点模拟试题及答案详解(各地真题)
- 分布式光伏发电系统接入配电网的电能质量提升方案
- 知识管理笔试试题及答案
- 《小学生新能源科普》课件
- 安全员安全巡查制度模版(2篇)
- 《县委书记的榜样【知识精研精析】焦裕禄》《在民族复兴的历史丰碑上》联读课件+【知识精研】统编版高中语文选择性必修上册
- 湘教版七年级数学上册第一次月考测试卷及答案
- 北师大版四年级上册数学教案-总复习第3课时 图形与几何
- 树木移植施工方案
- 陕西延安人文介绍
- 2024-2025年江苏专转本英语历年真题(含答案)
- Unit-2-A-great-picture(课件)-二年级英语上学期(人教PEP版2024)
- 沂蒙精神课件教学课件
- 一文搞定基本不等式二次不等式19类题型(老师版)
评论
0/150
提交评论