




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初高中数学衔接知识点专题(一)数与式的运算【要点回顾】1绝对值1绝对值的代数意义: 即 2绝对值的几何意义: 的距离 3两个数的差的绝对值的几何意义:表示 的距离4两个绝对值不等式:;2乘法公式我们在初中已经学习过了下列一些乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 我们还可以通过证明得到下列一些乘法公式:公式1公式2(立方和公式)公式3 (立方差公式)说明:上述公式均称为“乘法公式”3根式1式子叫做二次根式,其性质如下:(1) ;(2) ;(3) ; (4) 2平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根3立方根的概念: 叫做的立方根,记为4分式1分式的意义 形如的式子,若B中含有字母,且,则称为分式当M0时,分式具有下列性质: (1) ; (2) 2繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式,如,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质3分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1) 例2 计算: (1) (2)(3) 例3 已知,求的值例4 已知,求的值例5 计算(没有特殊说明,本节中出现的字母均为正数):(1) (2) (3) (4) 例6 设,求的值 专题二 因式分解1公式法常用的乘法公式:1平方差公式: ;2完全平方和公式: ;3完全平方差公式: 45(立方和公式)6 (立方差公式)由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,运用上述公式可以进行因式分解2分组分解法 从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式而对于四项以上的多项式,如既没有公式可用,也没有公因式可以提取因此,可以先将多项式分组处理这种利用分组来因式分解的方法叫做分组分解法分组分解法的关键在于如何分组常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式3十字相乘法(1)型的因式分解 这类式子在许多问题中经常出现,其特点是:二次项系数是1;常数项是两个数之积; 一次项系数是常数项的两个因数之和,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式(2)一般二次三项式型的因式分解由我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解4其它因式分解的方法其他常用的因式分解的方法:(1)配方法 (2)拆、添项法例1 (公式法)分解因式:(1) ;(2) 例2 (分组分解法)分解因式:(1) (2)例3 (十字相乘法)把下列各式因式分解:(1) (2) (3) (4) 例4 (十字相乘法)把下列各式因式分解:(1) ;(2) 解: 说明:用十字相乘法分解二次三项式很重要当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号例5 (拆项法)分解因式(3) (4) 专题三 一元二次方程根与系数的关系【要点回顾】1一元二次方程的根的判断式一元二次方程,用配方法将其变形为: 由于可以用的取值情况来判定一元二次方程的根的情况因此,把叫做一元二次方程的根的判别式,表示为:对于一元二次方程ax2bxc0(a0),有1当 0时,方程有两个不相等的实数根: ;2当 0时,方程有两个相等的实数根: ;3当 0时,方程没有实数根2一元二次方程的根与系数的关系定理:如果一元二次方程的两个根为,那么: 说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”上述定理成立的前提是 特别地,对于二次项系数为1的一元二次方程x2pxq0,若x1,x2是其两根,由韦达定理可知 x1x2p,x1x2q,即 p(x1x2),qx1x2,所以,方程x2pxq0可化为 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有 以两个数x1,x2为根的一元二次方程(二次项系数为1)是 x2(x1x2)xx1x20【例题选讲】例1 已知关于的一元二次方程,根据下列条件,分别求出的范围:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根(3)方程有实数根;(4)方程无实数根例2 已知实数、满足,试求、的值例3 若是方程的两个根,试求下列各式的值:(1) ;(2) ;(3) ;(4) 例4 已知是一元二次方程的两个实数根(1) 是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由(2) 求使的值为整数的实数的整数值解:(1) 假设存在实数,使成立 一元二次方程的两个实数根, ,又是一元二次方程的两个实数根, ,但不存在实数,使成立(2) 要使其值是整数,只需能被4整除,故,注意到,要使的值为整数的实数的整数值为 专题四平面直角坐标系一次函数、反比例函数要点回顾】1平面直角坐标系平面直角坐标系内的对称点:对称点或对称直线方程对称点的坐标轴 轴 原点 点 直线 直线 直线 直线 2函数图象 1一次函数: 称是的一次函数,记为:(k、b是常数,k0)特别的,当=0时,称是的正比例函数。2 正比例函数的图象与性质:函数y=kx(k是常数,k0)的图象是 的一条直线,当 时,图象过原点及第一、第三象限,y随x的增大而 ;当 时,图象过原点及第二、第四象限,y随x的增大而 3 一次函数的图象与性质:函数(k、b是常数,k0)的图象是过点(0,b)且与直线y=kx平行的一条直线.设(k0),则当 时,y随x的增大而 ;当 时, y随x的增大而 4反比例函数的图象与性质:函数(k0)是双曲线,当 时,图象在第一、第三象限,在每个象限中,y随x的增大而 ;当 时,图象在第二、第四象限.,在每个象限中,y随x的增大而 双曲线是轴对称图形,对称轴是直线与;又是中心对称图形,对称中心是原点【例题选讲】例1 已知、,根据下列条件,求出、点坐标(1) 、关于x轴对称;(2) 、关于y轴对称;(3) 、关于原点对称例2已知一次函数ykx2的图象过第一、二、三象限且与x、y轴分别交于、两点,O为原点,若AOB的面积为2,求此一次函数的表达式。 例3如图,反比例函数的图象与一次函数的图象交于,两点(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值 专题五 二次函数二次函数yax2bxc(a0)具有下列性质:1当a0时,函数yax2bxc图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最小值 2当a0时,函数yax2bxc图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最大值 上述二次函数的性质可以分别通过上图直观地表示出来因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题2二次函数的三种表示方式:(1)一般式: ;(2)顶点式: (3)交点式: 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则二次函数的关系式可设如下三种形式:给出三点坐标可利用一般式来求;给出两点,且其中一点为顶点时可利用顶点式来求给出三点,其中两点为与x轴的两个交点.时可利用交点式来求【例题选讲】例1 求二次函数y3x26x1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象例2 某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:x /元130150165y/件705035若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少? 例3 已知函数,其中,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值 例4 根据下列条件,分别求出对应的二次函数的关系式(1)已知某二次函数的最大值为2,图像的顶点在直线yx1上,并且图象经过点(3,1);(2)已知二次函数的图象过点(3,0),(1,0),且顶点到x轴的距离等于2;(3)已知二次函数的图象过点(1,22),(0,8),(2,8) 专题六 二次函数的最值问题【要点回顾】1二次函数的最值二次函数在自变量取任意实数时的最值情况(当时,函数在处取得最小值,无最大值;当时,函数在处取得最大值,无最小值2二次函数(X为全体实数时)最大值或最小值的求法 第一步确定a的符号,a0有最小值,a0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值3求二次函数在某一范围内的最值如:在(其中)的最值第一步:先通过配方,求出函数图象的对称轴:;第二步:讨论:1若时求最小值或时求最大值,需分三种情况讨论: 对称轴小于即,即对称轴在的左侧; 对称轴,即对称轴在的内部; 对称轴大于即,即对称轴在的右侧。2 若时求最大值或时求最小值,需分两种情况讨论:对称轴,即对称轴在的中点的左侧;对称轴,即对称轴在的中点的右侧;说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。【例题选讲】例1求下列函数的最大值或最小值 (1); (2)例2当时,求函数的最大值和最小值例3当时,求函数的取值范围例4当时,求函数的最小值(其中为常数)分析:由于所给的范围随着的变化而变化,所以需要比较对称轴与其范围的相对位置解:函数的对称轴为画出其草图(1) 当对称轴在所给范围左侧即时:当时,;(2) 当对称轴在所给范围之间即时:当时,;(3) 当对称轴在所给范围右侧即时:当时, 综上所述:例5当时,求函数的最大值。 各专题参考答案 专题一数与式的运算参考答案例1 (1)解法1:由,得;若,不等式可变为,即; 若,不等式可变为,即,解得:综上所述,原不等式的解为解法2: 表示x轴上坐标为x的点到坐标为2的点之间的距离,所以不等式的几何意义即为x轴上坐标为x的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x的点在坐标为3的点的左侧,在坐标为1的点的右侧所以原不等式的解为解法3:,所以原不等式的解为(2)解法一:由,得;由,得;若,不等式可变为,即4,解得x0,又x1,x0;若,不等式可变为,即14,不存在满足条件的x;若,不等式可变为,即4, 解得x4又x3,x4综上所述,原不等式的解为x0,或x4解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;|x3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|x3|所以,不等式4的几何意义即为|PA|PB|4由|AB|2,可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧所以原不等式的解为x0,或x4例2(1)解:原式= 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列(2)原式=(3)原式=(4)原式=例3解: 原式=例4解:原式= ,把代入得原式=例5解:(1)原式= (2)原式=说明:注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论(3)原式=(4) 原式=例6解:原式=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量【巩固练习】 1 2 3或4 5 6专题二因式分解答案例1分析:(1) 中应先提取公因式再进一步分解;(2) 中提取公因式后,括号内出现,可看着是或解:(1) (2) 例2(1)分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式解:(2)分析:先将系数2提出后,得到,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式解:例5 解: 【巩固练习】12; 3 其他情况如下:;.4专题三一元二次方程根与系数的关系习题答案例1解:,(1) ; (2) ;(3) ;(4)例2解:可以把所给方程看作为关于的方程,整理得:由于是实数,所以上述方程有实数根,因此:,代入原方程得:综上知:例3解:由题意,根据根与系数的关系得:(1) (2) (3) (4) 说明:利用根与系数的关系求值,要熟练掌握以下等式变形:,等等韦达定理体现了整体思想【巩固练习】1 A; 2A; 3; 4; 5 (1)当时,方程为,有实根;(2) 当时,也有实根6(1) ; (2) 专题四 平面直角坐标系、一次函数、反比例函数参考答案例1 解:(1)因为、关于x轴对称,它们横坐标相同,纵坐标互为相反数,所以,则、(2)因为、关于y轴对称,它们横坐标互为相反数,纵坐标相同,所以,则、(3)因为、关于原点对称,它们的横纵坐标都互为相反数,所以,则、例2分析:因为直线过第一、三象限,所以可知k0,又因为b2,所以直线与y轴交于(0,2),即可知OB2,而AOB的面积为2,由此可推算出OA2,而直线过第二象限,所以A点坐标为(2,0),由A、B两点坐标可求出此一次函数的表达式。解:B是直线ykx2与y轴交点,B(0,2),OB2,过第二象限,【巩固练习】1 B 2 D(2,2)、C(8,2)、B(6,0) 3(1)(2)点的坐标是或专题五二次函数参考答案例1 解:y3x26x13(x1)24,函数图象的开口向下;对称轴是直线x1;顶点坐标为(1,4);当x1时,函数y取最大值y4;当x1时,y随着x的增大而增大;当x1时,y随着x的增大而减小;采用描点法画图,选顶点A(1,4),与x轴交于点B和C,与y轴的交点为D(0,1),过这五点画出图象(如图25所示)说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确例2 分析:由于每天的利润日销售量y(销售价x120),日销售量y又是销售价x的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值解:由于y是x的一次函数,于是,设ykx(B),将x130,y70;x150,y50代入方程,有 解得 k1,b200 yx200设每天的利润为z(元),则z(x+200)(x120)x2320x24000(x160)21600,当x160时,z取最大值1600答:当售价为160元/件时,每天的利润最大,为1600元例3 分析:本例中函数自变量的范围是一个变化的范围,需要对a的取值进行讨论 解:(1)当a2时,函数yx2的图象仅仅对应着一个点(2,4),所以,函数的最大值和最小值都是4,此时x2; (2)当2a0时,由图226可知,当x2时,函数取最大值y4;当xa时,函数取最小值ya2;(3)当0a2时,由图226可知,当x2时,函数取最大值y4;当x0时,函数取最小值y0;(4)当a2时,由图226可知,当xa时,函数取最大值ya2;当x0时,函数取最小值y0说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题例4(1)分析:在解本例时,要充分利用题目中所给出的条件最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a解:二次函数的最大值为2,而最大值一定是其顶点的纵坐标,顶点的纵坐标为2又顶点在直线yx1上,所以,2x1,x1顶点坐标是(1,2)设该二次函数的解析式为,二次函数的图像经过点(3,1),解得a2二次函数的解析式为,即y2x28x7 说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题(2) 分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式解法一:二次函数的图象过点(3,0),(1,0),可设二次函数为ya(x3) (x1) (a0),展开,得 yax22ax3a, 顶点的纵坐标为 ,由于二次函数图象的顶点到x轴的距离2,|4a|2,即a所以,二次函数的表达式为y,或y分析二:由于二次函数的图象过点(3,0),(1,0),所以,对称轴为直线x1,又由顶点到x轴的距离为2,可知顶点的纵坐标为2,或2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(3,0),或(1,0),就可以求得函数的表达式解法二:二次函数的图象过点(3,0),(1,0),对称轴为直线x1又顶点到x轴的距离为2,顶点的纵坐标为2,或2于是可设二次函数为ya(x1)22,或ya(x1)22,由于函数图象过点(1,0),0a(11)22,或0a(11)22a,或a所以,所求的二次函数为y(x1)22,或y(x1)22说明:上述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题(3)解:设该二次函数为yax2bxc(a0)由函数图象过点(1,22),(0,8),(2,8),可得 解得 a2,b12,c8所以,所求的二次函数为y2x212x8 【巩固练习】1(1)D (2)C (3)D 2(1)yx2x2 (2)yx22x33(1)(2) (3)(4)4当长为6m,宽为3m时,矩形的面积最大5(1)函数f(x)的解析式为 (2)函数y的图像如图所示(3)由函数图像可知,函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人货车租赁合同
- 肾病内科学诊疗进展与临床实践
- 2025年事业单位工勤技能-湖南-湖南地图绘制员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北热力运行工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北无损探伤工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北仓库管理员五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-海南-海南机械热加工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-海南-海南保育员二级(技师)历年参考题库含答案解析
- 2025-2030中国箱包面料市场运作模式及营销发展趋势预测报告
- 2025年绿色消费理念传播与消费者行为引导的绿色消费市场竞争力分析
- 乡村公路沥青铺设施工方案
- 2024年中考物理压轴题专项训练:电磁继电器核心综合练(原卷版)
- 矿山事故应急报告制度
- 2024-2025学年山东省淄博市桓台县四年级上学期数学期中考试试题
- DB1402T36-2024农村居家养老服务规范
- 中国发电企业碳中和数字转型白皮书-埃森哲
- ISO27001信息安全管理体系培训资料
- 《绝对值》教学课件
- Unit 6 Work quietly!(教学设计)2023-2024学年人教PEP版英语五年级下册
- 高考英语考纲词汇3500词(珍藏版)
- 制造业智能化生产线改造方案提升生产效率
评论
0/150
提交评论