




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章一元一次方程,5.3一元一次方程的解法,第3课时用去分母法解一元一次方程,1,课堂讲解,去分母、用去分母法解方程,2,课时流程,逐点导讲练,课堂小结,作业提升,小红有多少块糖?小红上幼儿园,“六一”这天老师给了小红一些糖,回家后,小红先拿出糖的一半自己留给自己,然后把剩余的糖给爷爷一块,再把余下的糖的一半分给哥哥,又把给哥哥后剩余部分中那一块给妈妈,此时小红分完了所有的糖,原来小红有多少块糖呢?,1,知识点,去分母,问题1:你能解下面的方程吗?(x14)(x+20)答:能,学生会作如下解答:解:去括号,得x2x+5,移项得,得x-x52,合并同类项,得-x=3,两边同除以-得x-28.,知1讲,问题2:该方程与前两节课解过的方程有什么不同?答:以前学过的方程的系数都为整数,而这一题出现了分数.问题3:这个方程与前边的方程相比较,你喜欢解哪一种呢?答:解答前边的.问题4:能否把分数系数化为整数,把方程转化成我们以前学过的方程呢?答:可以.在方程左边乘以7的倍数,右边乘以4的倍数,就可以去掉分母,把分数化为整数,所以我们可以根据等式性质2,在方程两边同时乘上一个既是7又是4的倍数28即可.,知1讲,知识点,【例1】解方程,去分母正确的是()A.2x+3-x+1=15-xB.2x+6-x+1=15-3xC.2x+6-x-1=15-xD.2x+3-x+1=15-3x解析:等式的两边同乘以6去分母,得2(x+3)-(x-1)=3(5-x),去括号,得2x+6-x+1=15-3x,故选B.,知1讲,B,1,方程去分母得()A.22(2x4)=(x7)B122(2x4)=x7C122(2x4)=(x7)D12(2x4)=(x7),知1练,2,将方程的两边同乘_可得到3(x2)2(2x3),这种变形叫_,其依据是_解方程时,为了去分母应将方程两边同时乘()A10B12C24D6,知1练,(来自典中点),3,2,知识点,用去分母法解方程,知2讲,问题1:去分母时,方程两边同乘以一个什么数合适呢?问题:2:像方程,分子是多项式,去分母时应该如何处理?,总结,知2讲,在方程的两边同乘以分母的最小公倍数时,不要漏乘常数项,在去分母时,要防止忽略分数线的括号作用,去分母时,如果分子是多项式的应该加括号.,知识点,【例2】解下列方程:(1)(2)分析:由于方程中的某些项含有分母,我们可先依据等式的性质,将方程的两边同乘各分母的最小公倍数,去掉分母,再进行去括号、移项、合并同类项等变形求解.解:(1)方程的两边同乘6,得即2(3y+1)=7+y.去括号,得6y+2=7+y.移项,得6y-y=7-2.合并同类项,得5y=5.两边同除以5,得y=1.,知2讲,知识点,(2)方程的两边同乘10,得2x-5(3-2x)=10 x.去括号,得2x-15+10 x=10 x.移项,得2x+10 x10 x=15.合并同类项,得2x=15.两边同除以2,得,知2讲,(来自教材),总结,知2讲,解一元一次方程就是通过去_、去_、移项、合并同类项、未知数的系数化为_,使方程逐步转化为xa(a为常数)的形式解一元一次方程的一般步骤不一定全部用到,也不一定要按照上述的顺序进行,解方程时要认真观察,根据方程的特点,灵活安排解题步骤,熟练以后,有些步骤可以简化,(来自点拨),去分母,去括号,1,知识点,【例3】解方程:错解:去分母,得5(x2)3(2x3)2.去括号,得5x106x92.移项、合并同类项,得x21.系数化为1,得x21.错解分析:去分母时,方程两边应都乘各分母的最小公倍数,不能漏乘没有分母的项本题的错解正是忽视了这一点正确解法:去分母,得5(x2)3(2x3)30.去括号,得5x106x930.移项、合并同类项,得x49.系数化为1,得x49.,知2讲,(来自点拨),总结,知2讲,注意在去分母时,当方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号解此类题的关键是正确地将有分母的方程转化成无分母的方程,即去分母,这里运用了转化思想,(来自点拨),1,知2练,(来自教材),解下列方程:(1)2x+(1-x)=2(4-3x).(2)下面方程的解法对吗?若不对,请改正.解方程解:去分母,得2(3x-1)=1-4x-1.去括号,得6x-1=1-4x-1.移项,得6x-4x=1-1+1.2x=1,即x=,2,知2练,方程的解是()Ax1Bx2Cx4Dx6,(来自典中点),3,知2讲,【例4】解方程:分析:当分母中含有小数时,可以应用分数的基本性质把它们先化为整数,如解:将原方程化为去分母,得5x-(1.5-x)=1.去括号,得5x-1.5+x=1.移项,合并同类项,得6x=2.5.,(来自教材),总结,知2讲,本题运用了转化思想有些方程的分母中含有小数,我们可以利用分数的基本性质将分母化为整数,这样做起来较为简单,(来自点拨),知2练,解方程:,(来自点拨),1,知2练,(来自典中点),2,下面是解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据解:原方程可变形为,去分母,得3(3x5)2(2x1)()去括号,得9x154x2.()(),得9x4x152.()(),得5x17.(),得x.(),1解含分母的一元一次方程的关键是去分母,而去分母的关键是找各个分母的最小公倍数2运用分数的基本性质与运用等式的性质2的区别:前者是同一个分数的分子、分母同时乘同一个数或除以同一个不为0的数;后者是方程里各项同时乘同一个数或除以同一个不为0的数,用去分母法解一元一次方程要做到“三注意”:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生猪养殖企业与运输企业合作协议
- 请假口语交际课件
- 2025就业指导课合同与劳动权益解析
- 2025设备租赁合同范本大全
- 诗经蒹葭获奖课件
- 儿童游乐设施项目设计建造合同
- 诗经王风采葛课件
- 个性化办公空间租赁协议
- 家庭室内装修设计与施工协议
- 市场营销活动策划方案模板创新与执行
- 2025版劳动合同范本下载
- 2025年医疗机构软式内镜清洗消毒技术规范试题及答案
- 2025年重庆全国导游资格考试(政策与法律法规、导游业务)历年参考题库含答案详解(5套)
- 2025年八师兵团职工考试题库及答案
- 2025年全国“质量月”质量知识竞赛题库及答案
- 子宫多发性平滑肌瘤的个案护理
- 要素式强制执行申请书(申请执行用)
- 慢性根尖周炎病例汇报
- 2025年秋数学(新)人教版三年级上课件:第1课时 几分之一
- 公司项目谋划管理办法
- 2025年职业指导师考试试卷:职业指导师专业能力
评论
0/150
提交评论