




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(理)第5节数学归纳法,.了解数学归纳法的原理.能用数学归纳法证明一些简单的数学命题,整合主干知识,数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0N*)时命题成立;(2)(归纳递推)假设当nk(kN*,kn0)时命题成立,推出当_时命题也成立只要完成这两个步骤,就可以断定命题对n取第一个值后面的所有正整数都成立上述证明方法叫做数学归纳法,nk1,质疑探究2:数学归纳法两个步骤有什么关系?提示:数学归纳法证明中的两个步骤体现了递推思想,第一步是递推的基础,第二步是递推的依据,两个步骤缺一不可,否则就会导致错误(1)第一步中,验算nn0中的n0不一定为1,根据题目要求,有时可为2或3等(2)第二步中,证明nk1时命题成立的过程中,一定要用到归纳假设,掌握“一凑假设,二凑结论”的技巧,解析:观察等式左边的特征易知选C.答案:C,解析:因为假设nk(k2且k为偶数),故下一个偶数为k2.答案:B,解析:从n到n2共有n2n1个数,所以f(n)中共有n2n1项答案:D,4凸k边形内角和为f(k),则凸k1边形的内角和为f(k1)f(k)_.解析:易得f(k1)f(k).答案:,答案:2k,聚集热点题型,用数学归纳法证明等式,拓展提高(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n0是几;(2)由nk到nk1时,除等式两边变化的项外还要充分利用nk时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明,用数学归纳法证明不等式,拓展提高(1)用数学归纳法证明与n有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n值开始都成立的结论,常用数学归纳法证明(2)用数学归纳法证明不等式的关键是由nk时成立得nk1时成立,主要方法有放缩法;利用均值不等式法;作差比较法等,典例赏析3用数学归纳法证明42n13n2能被13整除,其中n为正整数思路索引当nk1时,把42(k1)13k3配凑成42k13k2的形式是解题的关键证明(1)当n1时,421131291能被13整除(2)假设当nk时,42k13k2能被13整除,则当nk1时,,用数学归纳法证明整除性问题,方法一42(k1)13k342k1423k2342k1342k1342k1133(42k13k2),42k113能被13整除,42k13k2能被13整除42(k1)13k3能被13整除方法二因为42(k1)13k33(42k13k2)(42k1423k23)3(42k13k2)42k113,42k113能被13整除,42(k1)13k33(42k13k2)能被13整除,因而42(k1)13k3能被13整除,当nk1时命题也成立,由(1)(2)知,当nN*时,42n13n2能被13整除,拓展提高用数学归纳法证明整除问题,P(k)P(k1)的整式变形是个难点,找出它们之间的差异,然后将P(k1)进行分拆、配凑成P(k)的形式,也可运用结论:“P(k)能被p整除且P(k1)P(k)能被p整除P(k1)能被p整除”,变式训练3已知n为正整数,aZ,用数学归纳法证明:an1(a1)2n1能被a2a1整除证明:(1)当n1时,an1(a1)2n1a2a1,能被a2a1整除(2)假设nk时,ak1(a1)2k1能被a2a1整除,那么当nk1时,ak2(a1)2k1(a1)2ak1(a1)2k1ak2ak1(a1)2(a1)2ak1(a1)2k1ak1(a2a1)能被a2a1整除,即当nk1时命题也成立根据(1)(2)可知,对于任意nN*,an1(a1)2n1能被a2a1整除,思路索引关键是搞清nk到nk1时对角线增加的条数,看顶点的变化可知对角线的变化从而可解证明因为三角形没有对角线,所以n3时,f(3)0,命题成立,用数学归纳法证明几何问题,拓展提高用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析;事实上,将nk1和nk分别代入所证的式子,然后作差,即可求出增加量,这也是用数学归纳法证明几何问题的一大技巧.,变式训练4平面上有n个圆,每两圆交于两点,每三圆不过同一点,求证这n个圆分平面为n2n2个部分证明:(1)当n1时,n2n21122,而一圆把平面分成两部分,所以n1命题成立(2)设nk时,k个圆分平面为k2k2个部分,则nk1时,第k1个圆与前k个圆有2k个交点,这2k个交点分第k1个圆为2k段,每一段都将原来所在的平面一分为二,故增加了2k个平面块,共有(k2k2)2k(k1)2(k1)2个部分对nk1也成立,由(1)(2)可知,这n个圆分割平面为n2n2个部分,备课札记_,提升学科素养,(理)归纳、猜想、证明,审题视角(1)将n1,2,3代入已知等式得a1,a2,a3,从而可猜想an,并用数学归纳法证明(2)利用分析法,结合x0,y0,xy1,利用基本不等式可证,温馨提醒(1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳猜想证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性(2)为了正确地猜想an,首先准确求出a1,a2,a3的值,1一种方法数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题证明时步骤(1)和(2)缺一不可,步
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职代会员工管理办法
- 上海高危产妇管理办法
- 行业系统消防管理办法
- 2025年HF-FB防弹玻璃项目发展计划
- 蚌埠艺术培训管理办法
- 营销费用兑付管理办法
- 行政平台维护管理办法
- 专利实施许可管理办法
- 磁器口古镇管理办法
- 精装房验收管理办法
- 贵州省桐梓县狮溪铝多金属(含锂)普查项目环境影响评价报告表
- 考勤培训课件
- 吉林省梅河口市2025年上半年公开招聘辅警试题含答案分析
- 灭火和应急疏散预案演练制度(足浴会所)
- 清产核资业务培训课件
- 中国黄金集团招聘面试经典题及答案
- GB/T 4026-2025人机界面标志标识的基本和安全规则设备端子、导体终端和导体的标识
- 青岛版科学一年级上册(新教材)1.1 吹泡泡(教学课件)(内嵌视频)
- 感染性心内膜炎术后护理查房
- 推理能力题目及答案
- 2025年高等教育心理学模拟题(含答案)
评论
0/150
提交评论