




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2节两直线的位置关系,最新考纲1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.,1.两条直线平行与垂直的判定,(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1l2.特别地,当直线l1,l2的斜率都不存在时,l1与l2.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1l2,当一条直线斜率为零,另一条直线斜率不存在时,两条直线.,知识梳理,k1k2,平行,k1k21,垂直,2.两直线相交,唯一解,无解,无数个解,3.距离公式,(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|.特别地,原点O(0,0)与任一点P(x,y)的距离|OP|.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:AxByC0的距离d.(3)两条平行线间的距离公式一般地,两条平行直线l1:AxByC10,l2:AxByC20间的距离d.,常用结论与微点提醒1.直线系方程(1)与直线AxByC0平行的直线系方程是AxBym0(mR且mC).(2)与直线AxByC0垂直的直线系方程是BxAyn0(nR).2.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.,1.思考辨析(在括号内打“”或“”),(1)当直线l1和l2的斜率都存在时,一定有k1k2l1l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1l2,若l1的斜率k10,则l2的斜率不存在.答案(1)(2)(3)(4),诊断自测,答案C,3.(2018高安期中)经过抛物线y22x的焦点且平行于直线3x2y50的直线l的方程是()A.6x4y30B.3x2y30C.2x3y20D.2x3y10,答案A,4.直线2x2y10,xy20之间的距离是_.,5.(必修2P89练习2改编)已知P(2,m),Q(m,4),且直线PQ垂直于直线xy10,则m_.,答案1,考点一两直线的平行与垂直,【例1】(一题多解)已知直线l1:ax2y60和直线l2:x(a1)ya210.(1)当l1l2时,求a的值;(2)当l1l2时,求a的值.,解(1)法一当a1时,l1:x2y60,l2:x0,l1不平行于l2;当a0时,l1:y3,l2:xy10,l1不平行于l2;当a1且a0时,,综上可知,a1.,(2)法一当a1时,l1:x2y60,l2:x0,l1与l2不垂直,故a1不符合;,法二l1l2,A1A2B1B20,规律方法1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.,【训练1】(1)已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则直线l的方程是()A.xy20B.xy20C.xy30D.xy30(2)设不同直线l1:2xmy10,l2:(m1)xy10.则“m2”是“l1l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,解析(1)圆x2(y3)24的圆心为点(0,3),又因为直线l与直线xy10垂直,所以直线l的斜率k1.由点斜式得直线l:y3x0,化简得xy30.(2)当m2时,代入两直线方程中,易知两直线平行,即充分性成立.,但当m1时,两直线重合,不符合要求,故必要性成立,故选C.答案(1)D(2)C,考点二两直线的交点与距离问题,而直线方程ykx2k1可变形为y1k(x2),表示这是一条过定点P(2,1),斜率为k的动直线.两直线的交点在第一象限,两直线的交点必在线段AB上(不包括端点),动直线的斜率k需满足kPAkkPB.,(2)法一当直线l的斜率存在时,设直线l的方程为y2k(x1),即kxyk20.,当直线l的斜率不存在时,直线l的方程为x1,也符合题意.,即x3y50.当l过AB中点时,AB的中点为(1,4).直线l的方程为x1.故所求直线l的方程为x3y50或x1.,规律方法1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P(x0,y0)到直线xa的距离d|x0a|,到直线yb的距离d|y0b|;(2)两平行线间的距离公式要把两直线方程中x,y的系数分别化为相等.,【训练2】(2018合肥调研)设l1为曲线f(x)exx(e为自然对数的底数)的切线,直线l2的方程为2xy30,且l1l2,则直线l1与l2的距离为_.,考点三对称问题,【例3】已知直线l:2x3y10,点A(1,2).求:(1)点A关于直线l的对称点A的坐标;(2)直线m:3x2y60关于直线l的对称直线m的方程;(3)(一题多解)直线l关于点A(1,2)对称的直线l的方程.,(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m上.设对称点为M(a,b),,又m经过点N(4,3),由两点式得直线方程为9x46y1020.,(3)法一在l:2x3y10上任取两点,如M(1,1),N(4,3),则M,N关于点A的对称点M,N均在直线l上.易知M(3,5),N(6,7),由两点式可得l的方程为2x3y90.法二设P(x,y)为l上任意一点,则P(x,y)关于点A(1,2)的对称点为P(2x,4y),P在直线l上,2(2x)3(4y)10,即2x3y90.,规律方法1.解决点关于直线对称问题要把握两点,点M与点N关于直线l对称,则线段MN的中点在直线l上,直线l与直线MN垂直.2.如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.3.若直线l1,l2关于直线l对称,则有如下性质:(1)若直线l1与l2相交,则交点在直线l上;(2)若点B在直线l1上,则其关于直线l的对称点B在直线l2上.,【训练3】(一题多解)光线沿直线l1:x2y50射入,遇直线l:3x2y70后反射,求反射光线所在的直线方程.,反射点M的坐标为(1,2).又取直线x2y50上一点P(5,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态围墙施工与节能改造承包合同范本
- 2025版铁矿石国际贸易结算合同
- 2025年度石材材料市场调研与采购合同
- 2025版企业员工职业规划与团队协作能力培训合同
- 2025版品牌皮鞋品牌授权区域市场推广费用结算合同
- 2025年度水电安装工程安全管理承包合同
- 2025版智能家居控制系统购买及售后服务合同
- 2025版事业单位借调人员管理与服务规范及薪酬福利合同
- 2025版石子包销合同范本(适用环保工程)
- 2025年度智能化企业出纳岗位聘用协议
- 常减压装置仿真操作正常停车石油炼制装置操作02课件
- 2025年科技创新企业财务工作总结及计划
- 餐饮店食品经营操作流程4篇
- 2025年黑龙江、吉林、辽宁、内蒙古高考生物真题试卷(解析版)
- 药物治疗监测试题及答案
- GB/T 45654-2025网络安全技术生成式人工智能服务安全基本要求
- T/CAPA 009-2023面部埋线提升技术操作规范
- 塑胶料品质协议书
- 2025届江苏省苏州市高三9月期初阳光调研-语文试卷(含答案)
- 旅行地接协议书
- DB3707T 120-2024无特定病原凡纳滨对虾种虾循环水养殖技术规范
评论
0/150
提交评论