




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第三章导数及其应用,函数与导数是高考数学的重要内容之一,理科16年一小一大,15年、14年、13年和12年均为二小一大22分函数的观点和思想方法贯穿整个高中数学的全过程,通过对近几年新课标卷考题的研究发现,小题考点可总结为八类:一是分段函数,二是函数的性质,三是基本函数,四是函数图像,五是方程的根(函数的零点),六函数的最值,七导数及其应用,八定积分涉及到的思想方法也是相当的丰富,如分段函数问题常与分类讨论思想相结合,有关方程根的情况判断常涉及函数与方程思想和等等价转化思想,研究函数的图像问题和基本函数的性质时常利用数形结合思想等解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个试题考查丰富的数学思想,如函数与方程思想常应用解决函数与方程的相关问题,等价转化思想常应用于不等式恒成立问题和不等式证明问题,分类讨论思想常用于判断含有参数的函数的单调性、最值等问题,同时要求考生有较强的计算能力和综合问题的分析能力纵观近几年全国新课标高考题,常见的考点可分为六个方面,一变量的取值范围问题,二证明不等式的问题,三方程的根(函数的零点)问题,四函数的最值与极值问题,五导数的几何意义问题,六存在性问题,函数与导数,2016年数学考试情况分析:,(1)理科各题情况分析(人工部分):,第14讲导数的运算及几何意义,点(x0,f(x0)处切线,f(x0),yf(x0)f(x0)(xx0),0,1,2x,nxn-1,cosx,-sinx,ex,axlna,f(x)g(x),f(x)g(x)f(x)g(x),yxyuux,看到此题你想到什么?,1、熟记公式及运算法则,2、要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.,看到此题你又想到什么?,【归纳总结】如何求复合函数的导数,1、熟记公式及复合函数运算法则,三、导数的几何意义及应用,类型1、求曲线在某点处的切线方程,例3、已知曲线C:,求曲线C在横坐标为2的切线方程,看到此题你又想到什么?,分析:想到了:1、求导2、写出切线方程,【归纳总结】利用导数的几何意义求曲线在某点的切线方程的步骤,1、求函数f(x)的导数,将代入导函数得,2、写出切线方程,即,类型2、求曲线过某点处的切线方程,例4、已知曲线C:,求过点且与曲线C相切的切线L方程,看到此题你又想到什么?,【归纳总结】利用导数的几何意义求曲线过某点的切线方程的步骤,1、设切点坐标,2、围绕切点有三个等量关系,想到了设切点坐标,找切点的等量关系,(e,e),3,当函数中含有参数时,可用参数表示出斜率和切线方程,再据条件求参数.,课堂小结:,小牛试刀,走进高考,(2)用minm,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高中学业水平考试试题库技术模拟题(答案+解析)
- 退休职工的道德责任协议
- 产品质量安全检查单质量控制标准与评估体系参考
- 企业资源计划管理(ERP)模板
- 企业组织架构与职能优化方案
- 智能化客户服务机器人应对话术标准化模板
- 2025年国家电网县域供电所综合柜员招聘面试模拟题及答案
- 商业分销及市场代理协议
- 员工培训与能力提升辅助工具
- 企业培训内容生成工具
- 2025央国企AI+数智化转型研究报告
- 2025年浙江省初中学业水平考试数学试卷真题(精校打印)
- 最小单元应急管理制度
- 洞藏酒项目商业实施计划书
- 税收征管数字化转型实践的国际比较及借鉴
- 2024年甘肃白银有色集团股份有限公司招聘真题
- 医疗健康领域的数字化人才培养计划
- (高清版)DG∕TJ 08-9-2023 建筑抗震设计标准
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读
- GB/T 10250-2025船舶电气与电子设备电磁兼容性金属船体船舶
- 2025全国小学生“学宪法、讲宪法”活动知识竞赛题库及答案
评论
0/150
提交评论