已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2二次函数的图象(1),回顾知识:,一、正比例函数y=kx(k0)其图象是什么.,二、一次函数y=kx+b(k0)其图象又是什么.,正比例函数y=kx(k0)其图象是一条经过原点的直线.,一次函数y=kx+b(k0)其图象也是一条直线.,反比例函数(k0)其图象是双曲线.,三、反比例函数(k0)其图象又是什么.,二次函数y=ax+bx+c(a0)其图象又是什么呢?.,二次函数y=ax2的图像,函数图象画法,列表,描点,连线,0,0.25,1,2.25,4,0.25,1,2.25,4,描点法,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,0,-0.25,-1,-2.25,-4,-0.25,-1,-2.25,-4,注意:列表时自变量取值要均匀和对称。,0,0.5,2,4.5,8,0.5,2,4.5,8,列表参考,0,0.5,2,4.5,8,0.5,2,4.5,8,0,1.5,-6,1.5,-6,二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物线y=-x2的位置有什么关系?如果在同一坐标系内画函数y=ax2与y=-ax2的图象,怎样画才简便?,4、练习4,说明演示,当a0时,在对称轴的左侧,y随着x的增大而减小。,当a0时,在对称轴的右侧,y随着x的增大而增大。,当a0时,在对称轴的左侧,y随着x的增大而增大。,当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。当a0,试比较y1与y2的大小.,综合练习,谈收获:,1.二次函数y=ax2(a0)的图像是一条抛物线.,2.图象关于y轴对称,顶点是坐标原点.,3.当a0时,抛物线的开口
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家具行业智能化产品应用研究报告及未来发展趋势预测
- 2025年互联网金融行业金融科技与数字货币发展研究报告及未来发展趋势预测
- 2025年5G技术在工业互联网发展中的应用研究报告及未来发展趋势预测
- 2025年房地产行业个人信息保护合规实务考核试卷
- 2025年学前教育普惠性发展专项能力测试-城市“新增人口区域”普惠性幼儿园规划考核试卷
- 2025年新能源行业ESG投资与新能源项目绿色能源消费资格考核试卷
- 2025广东中山市公安局横栏分局招聘警务辅助人员9人考试笔试备考题库及答案解析
- 成都市泡桐树小学2026年储备教师招聘笔试考试参考题库及答案解析
- 2025广东南粤银行珠海分行招聘考试笔试参考题库附答案解析
- 2025年福建省龙岩华侨职业中专学校专职心理健康区聘教师招聘考试笔试模拟试题及答案解析
- 《医学美容技术》课件-实训3:二氧化碳激光祛赘生物技术
- 2025信阳辅警考试题库
- 2025年美术类中考试题及答案
- 绿色防控培训
- 麻醉专业医疗质量控制指标解读
- 护理不良事件及法律法规
- 2025年贵州盐业集团有限责任公司招聘笔试参考题库含答案解析
- 《消防检查指导手册》(2024版)
- 隧道渗水、漏水、排水处治方案
- 《保障农民工工资支付条例》五项制度特别解读
- 《职业发展与就业指导》教学课件
评论
0/150
提交评论