函数的概念和图象_第1页
函数的概念和图象_第2页
函数的概念和图象_第3页
函数的概念和图象_第4页
函数的概念和图象_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 8 函数的概念和图象 本资料为 WoRD文档,请点击下载地址下载全文下载地址第二章函数概念与基本初等函数 第 1 课时函数的概念和图象(一) 银河学校张西元 教学目标: 使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系 . 教学重点: 函数的概念,函数定义域的求法 . 教学难点: 函数概念的理解 . 教学过程: . 课题导入 师在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的? (几位学生试着 表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述) . 设在一个变化的过程中有两个变量 x 和 y,如果对于 x 的每一个值, y 都有惟一的值与它对应,那么就说 y 是 x 的函数,x 叫做自变量 . 2 / 8 师我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题: 问题一: y 1( xR )是函数吗? 问题二: y x 与 y x2x是同一个函数吗? (学生思考,很难回答) 师显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概 念(板书课题) . . 讲授新课 师下面我们先看两个非空集合 A、 B 的元素之间的一些对应关系的例子 . 在( 1)中,对应关系是 “ 乘 2” ,即对于集合 A 中的每一个数 n,集合 B 中都有一个数 2n 和它对应 . 在( 2)中,对应关系是 “ 求平方 ” ,即对于集合 A 中的每一个数 m,集合 B 中都有一个平方数 m2和它对应 . 在( 3)中,对应关系是 “ 求倒数 ” ,即对于集合 A 中的每一个数 x,集合 B 中都有一个数 1x和它对应 . 请同学们观察 3 个对应,它们分别是怎样形式的对应呢? 生一对一、二对一、一对一 . 师这 3 个对应的共 同特点是什么呢? 生甲 对于集合 A 中的任意一个数,按照某种对应关系,集合 B 中都有惟一的数和它对应 . 3 / 8 师生甲回答的很好,不但找到了 3 个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的 .实际上,函数就是从自变量 x 的集合到函数值 y 的集合的一种对应关系 . 现在我们把函数的概念进一步叙述如下:(板书) 设 A、 B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有惟一确定的数 f(x)和它对应,那么就 称 f AB 为从集合 A 到集合 B的一个函数 . 记作: y f(x), xA 其中 x 叫自变量, x 的取值范围 A 叫做函数的定义域,与 x的值相对应的 y(或 f(x))值叫做函数值,函数值的集合 y|y f(x), xA 叫函数的值域 . 一次函数 f(x) ax b(a0) 的定义域是 R,值域也是 R.对于 R中的任意一个数 x,在 R中都有一个数 f(x) ax b(a0)和它对应 . 反比例函数 f(x) kx(k0) 的定义域是 A x|x0 ,值域是 B f(x)|f(x)0 ,对于 A 中的任意一个实数 x,在 B中都有一 个实数 f(x) kx(k0) 和它对应 . 二次函数 f(x) ax2 bx c( a0 )的定义域是 R,值域是当 a 0 时 B f(x)|f(x)4ac b24a;当 a 0 时, B4 / 8 f(x)|f(x)4ac b24a,它使得 R 中的任意一个数 x 与 B中的数 f(x) ax2 bx c(a0) 对应 . 函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题 . y=1( xR )是函数,因为对于实数集 R 中的任何一个数 x,按照对应关系 “ 函数值是 1” ,在 R 中 y 都有惟一确定的值1 与它对应,所以说 y 是 x 的函数 . y x 与 y x2x不是同一个函数,因为尽管它们的对应关系一样,但 y x的定义域是 R,而 y x2x的定义域是 x|x0.所以 y x 与 y x2x不是同一个函数 . 师理解函数的定义,我们应该注意些什么呢? (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结) 注意: 函数是非空数集到非空数集上的一种对应 . 符号 “f:AB” 表示 A 到 B 的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可 . 集合 A 中数的任意性,集合 B 中数的惟一性 . f 表示对应关系,在不同 的函数中, f 的具体含义不一样 . f(x) 是一个符号,绝对不能理解为 f 与 x 的乘积 . 师在研究函数时,除用符号 f(x)表示函数外,还常用g(x)、 F( x)、 G( x)等符号来表示 . 例题分析 5 / 8 例 1求下列函数的定义域 . (1)f(x) 1x 2(2)f(x) 3x 2(3)f(x) x 1 12 x 分析:函数的定义域通常由问题的实际背景确定 .如果只给出解析式 y f(x),而没有指明它的定义域 .那么函数的定义域就是指能使这个式子有意义的实数 x 的集合 . 解: (1)x 20 ,即 x2 时, 1x 2 有意义 这个函数的定义域是 x x2 (2)3x 20 ,即 x 23时 3x 2 有意义 函数 y 3x 2 的定义域是 23, ) (3)x 102 x0x 1x2 这个函数的定义域是 x x 1x x2 1, 2) ( 2, ) . 注意:函数的定义域可用三种方法表示:不等式、集合、区间 . 从上例可以看出,当确定用解析式 y f( x)表示的函数的定义域时,常有以下几种情况: (1)如果 f(x)是整式,那么函数的定义域是实数集 R; (2)如果 f(x)是分式, 那么函数的定义域是使分母不等于零的实数的集合; (3)如果 f( x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合; (4)如果 f( x)是由几个部分的数学式子构成的,那么函数6 / 8 的定义域是使各部分式子都有意义的实数的集合 (即使每个部分有意义的实数的集合的交集 ); (5)如果 f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合 . 例如:一矩形的宽为 xm,长是宽的 2 倍,其面积为 y 2x2,此函数定义域为 x 0 而不是全体实数 . 由以上分析可知:函数的定义 域由数学式子本身的意义和问题的实际意义决定 . 师自变量 x 在定义域中任取一个确定的值 a 时,对应的函数值用符号 f(a)来表示 .例如,函数 f(x) x2 3x 1,当 x 2 时的函数值是 f(2) 22 32 1 11 注意: f(a)是常量, f(x)是变量, f(a)是函数 f(x)中当自变量 x a 时的函数值 . 下面我们来看求函数式的值应该怎样进行呢? 生甲 求函数式的值,严格地说是求函数式中自变量 x 为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的 x 换为相应确定的数(或字母,或 式子)进行计算即可 . 师回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢 ! 生乙 判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致7 / 8 时,这两个函数就不同 . 师生乙的回答完整吗? 生完整 !(课本上就是如生乙所述那样写的) . 师大家说,判定两个函数是否相同的依据是什么? 生函数的定义 . 师函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢? (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?) (无人回答) 师同学们预习时还是欠仔细,欠思考 !我们做事情,看问题都要多问几个为什么 !函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗 !关注了函数的定义域与对应关系,三者就全看了 ! (生恍然大悟,我们怎么就没想到呢?) 例 2求下列函数的值域 (1)y 1 2x( xR ) (2)y x 1x 2, 1, 0, 1,2 (3)y x2 4x 3( 3x1 ) 分析:求函数的值域应确定相应的定义域后 再根据函数的具体形式及运算确定其值域 . 8 / 8 对于 (1)(2)可用 “ 直接法 ” 根据它们的定义域及对应法则得到 (1)(2)的值域 . 对于 (3)可借助数形结合思想利用它们的图象得到值域,即“ 图象法 ”. 解: (1)yR (2)y1 , 0, 1 (3)画出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论