2018届高中数学第2章条件概率与事件的独立性2.2.2事件的独立性学案.docx_第1页
2018届高中数学第2章条件概率与事件的独立性2.2.2事件的独立性学案.docx_第2页
2018届高中数学第2章条件概率与事件的独立性2.2.2事件的独立性学案.docx_第3页
2018届高中数学第2章条件概率与事件的独立性2.2.2事件的独立性学案.docx_第4页
2018届高中数学第2章条件概率与事件的独立性2.2.2事件的独立性学案.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2事件的独立性课时目标1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题1两个事件相互独立:如果事件A是否发生对事件B发生的概率_,即_,这时,我们称两个事件A,B相互独立,并把这两个事件叫做相互独立事件2当A、B事件独立时,A与,与B,与也相互独立一、选择题1生产某零件要经过两道工序,第一道工序的次品率为0.1,第二道工序的次品率为0.03,则该零件的次品率是()A0.13 B0.03 C0.127 D0.8732从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)()A. B. C. D.3一袋中装有3个红球和2个白球,另一袋中装有2个红球和1个白球,从每袋中任取一球,则至少取到一个白球的概率是()A. B. C. D.4. 如图,用K、A1、A2三类不同的元件连接成一个系统当K正常工作且A1、A2至少有一个正常工作时,系统正常工作已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为()A0.960 B0.864 C0.720 D0.5765有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p(0p1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为()A(1p)n B1pnCpn D1(1p)n二、填空题6有一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则两人都未解决的概率为_,问题得到解决的概率为_7两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是_8在一条马路上的甲、乙、丙三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆汽车在这条马路上行驶,那么在这三处都不停车的概率是_三、解答题9某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别是100分、100分、200分,答错得零分假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率10甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约设每人面试合格的概率都是,且面试是否合格互不影响求:(1)至少有1人面试合格的概率;(2)没有人签约的概率能力提升11加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、,且各道工序互不影响,则加工出来的零件的次品率为_12. 如图,在一段线路中安装5个自动控制开关,在某段时间内各个开关是否能够闭合相互之间没有影响,在某段时间内各个开关能够闭合的概率如下表:开关A1A2A3B1B2闭合的概率0.60.50.80.70.9求在这段时间内下列事件发生的概率:(1)由于B1,B2不闭合而线路不通;(2)由于A1,A2,A3不闭合而线路不通;(3)线路正常工作1求相互独立事件同时发生的概率的程序是:(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求其积2一个事件的正面包含基本事件个数较多,而它的对立事件包含基本事件个数较少时,则用公式P(A)1P()计算22.2事件的独立性答案知识梳理1没有影响P(B|A)P(B)作业设计1C两道工序的次品率相互独立,该零件的正品率为(10.1)(10.03)0.873.该零件的次品率是10.8730.127.2D3B由题易知,全都是红球的概率为,故至少取到一个白球的概率是1.4B方法一由题意知K,A1,A2正常工作的概率分别为P(K)0.9,P(A1)0.8,P(A2)0.8.K,A1,A2相互独立,A1,A2至少有一个正常工作的概率为P(1A2)P(A12)P(A1A2)(10.8)0.80.8(10.8)0.80.80.96.系统正常工作的概率为P(K)P(1A2)P(A12)P(A1A2)0.90.960.864.方法二A1,A2至少有一个正常工作的概率为1P(12)1(10.8)(10.8)0.96.系统正常工作的概率为P(K)1P(12)0.90.960.864.5D至少有一位同学通过测试的对立事件为无人通过测试,其概率为(1p)n.应用对立事件的概率求解知,至少有一位同学能通过测试的概率为1(1p)n,故选D.6.解析设事件A:“甲解决这道难题”,事件B:“乙解决这道难题”,A,B相互独立两人都未能解决的概率为P( )(1)(1).问题得到解决的概率为P(A)P(B)P(AB)1P( )1.70.56解析设事件A:“甲击中目标”,事件B:“乙击中目标”,由题意知A、B相互独立,P(AB)P(A)P(B)0.80.70.56.8.解析记某辆汽车在这条马路上行驶,在甲处不用停车为事件A,在乙处不用停车为事件B,在丙处不用停车为事件C,则由已知得P(A),P(B),P(C),所以所求概率为P(ABC)P(A)P(B)P(C).9解记P(A)0.8,P(B)0.7,P(C)0.6.(1)事件“这名同学得300分”可表示为ACBC,所以P(ACBC)P(AC)P(BC)P(A)P()P(C)P()P(B)P(C)0.8(10.7)0.6(10.8)0.70.60.228.(2)“这名同学至少得300分”可理解为这名同学得300分或400分,所以该事件可表示为ACBCABC,所以P(ACBCABC)P(ACBC)P(ABC)0.228P(A)P(B)P(C)0.2280.80.70.60.564.10解用A、B、C分别表示事件甲、乙、丙面试合格由题意知A、B、C相互独立,且P(A)P(B)P(C).(1)至少有1人面试合格的概率是1P( )1P()P()P()13.(2)没有人签约的概率为P(B)P( C)P( )P()P(B)P()P()P()P(C)P()P()P()333.11.解析加工出来的零件的正品率为(1)(1)(1),所以次品率为1.12解(1)记“开关B1闭合”为事件B1,“开关B2闭合”为事件B2,所以所求概率为1P(B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论