几种不同类型的函数模型知识点.doc_第1页
几种不同类型的函数模型知识点.doc_第2页
几种不同类型的函数模型知识点.doc_第3页
几种不同类型的函数模型知识点.doc_第4页
几种不同类型的函数模型知识点.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

几种不同类型的函数模型一 函数模型及数学建模函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题那么如何建立数学模型呢?可按以下步骤完成(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题建模过程示意图:二 几种常见的函数模型1一次函数模型:f(x)kxb(k、b为常数,k0);2反比例函数模型:f(x)b(k、b为常数,k0);3二次函数模型:f(x)ax2bxc(a、b、c为常数,a0);4指数函数模型:f(x)abxc(a、b、c为常数,a0,b0,b1);5对数函数模型:f(x)mlogaxn(m、n、a为常数,a0,a1);6幂函数模型:f(x)axnb(a、b、n为常数,a0,n1);7分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛三 指、对、幂三种函数模型增长速度的比较正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,)上,尽管函数yax(a1),ylogax(a1)和yxn(n0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度则会越来越慢,因此总会存在一个x0,当xx0时,就有logaxxn1),y=logax(a1)和y=xn(n0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x的增大,y=ax(a1)的增长速度越来越快,会超过并远远大于y=xn(n0)的增长速度,表现为指数爆炸;(3)随着x的增大,y=logax(a1)的增长速度会越来越慢;(4)随着x的增大,y=ax(a1)的图象逐渐表现为与y轴平行一样,而y=logax(a1)的图象逐渐表现为与x轴平行一样;(5)当a1,n0时,总会存在一个x0,当xx0时,有axxnlogax;(6)当0a1,nx0时,有logaxxnax一次函数模型例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y1(元)、y2(元)的关系分别如图(1)、图(2)所示图(1)图(2)(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较解:(1)由图象可设y1k1x29,y2k2x,把点B(30,35),C(30,15)分别代入y1,y2得k1,k2.y1x29(x0),y2x(x0)(2)令y1y2,即x29x,则x96.当x96时,y1y2,两种卡收费一致;当xy2,即便民卡便宜;当x96时,y1y2,即如意卡便宜函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求本题由于过原点的直线是正比例函数图象,因此运用了待定系数法求得一次函数解析式,然后利用函数解析式解决了实际问题借助函数图象表达题目中的信息,读懂图象是关键例2 一个报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买进多少份才能使每月所获得的利润最大?并计算每月最多能获得的利润解:设每天从报社买进x(250x400,xN)份报纸,可列表:数量(份)价格(元)金额(元)买进30x0.206x卖出20x102500.306x750退回10(x250)0.080.8x200设每月所获利润为y元,则y(6x750)(0.8x200)6x0.8x550(250x400,xN)y0.8x550在250,400上是增函数,当x400时,y取得最大值870.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元二次函数模型例3 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售羊毛衫的销售有淡季与旺季之分标价越高,购买人数越少我们称刚好无人购买时的最低标价为羊毛衫的最高价格某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100元/件针对该品牌羊毛衫的市场调查显示:购买该品牌羊毛衫的人数是标价的一次函数;该品牌羊毛衫销售旺季的最高价格是淡季最高价格的倍;在销售旺季,商场以140元/件价格销售时能获取最大利润(1)分别求出该品牌羊毛衫销售旺季的最高价格与淡季的最高价格;(2)在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少?思路点拨:首先用标价x表示出购买人数和旺季价格,进而可表示出利润函数,再利用函数关系解决相关问题解:(1)设在旺季销售时羊毛衫的标价为x元/件,购买人数为kxb(k0),则旺季的最高价格为元/件,利润函数L(x)(x100)(kxb)kx2(100kb)x100b,x100,当x50时,L(x)最大由题意知50140,解得180.即旺季的最高价格是180(元/件),则淡季的最高价格是180120(元/件)(2)设在淡季销售时羊毛衫的标价为t元/件,购买人数为mtn(m0),则淡季的最高价格为120(元/件),即n120m,利润函数L(t)(t100)(mt120m)m(t110)2100m,t100,120当t110时,L(t)最大所以,在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件二次函数模型是初等数学阶段研究的最为广泛的多项式函数,由于具有二次函数、二次方程、二次不等式、二次曲线等四个“二次”互为关联的重要特征,因此在应用型问题中是最为重要的模型此外作为一个考点,由于二次函数涉及函数单调性、区间最值等诸多方面,因此有理由相信,今后这类试题仍将是重点本题最为重要的特点是逆向运用二次函数最值问题,通过旺季最值的取得来获得参变量之间的关系进而对淡季羊毛衫的价格作出判断与预测这种方法值得去关注指数函数模型例4 按复利计算利率的一种储蓄,本金为a,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?思路点拨:复利是计算利息的一种方法,即把前一期的利息和本金加在一起作本金,再计算下一期的利息解:已知本金为a元1期后的本利和为y1aar(1r)a;2期后的本利和为y2a(1r)a(1r)ra(1r)2;3期后的本利和为y3a(1r)3;x期后的本利和为ya(1r)x.将a1000(元),r2.25%,x5代入上式得y1000(12.25%)51000(1.0225)51117.68(元)故复利函数式为ya(1r)x,5期后的本利和为1117.68元在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N,平均增长率为P,则对于时间x的总产值y,可以用公式yN(1P)x来表示,解决平均增长率的问题时要用到这个函数式例5 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.(1)写出y关于x的函数关系式;(2)至少通过多少块玻璃后,光线强度减弱到原来的以下?(lg 30.4771)解:(1)ya(110%)x(xN*)(2)ya,a(110%)xa,0.9x,xlog0.910.4,x11.对数函数模型例6 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v5log2,单位是m/s,其中Q表示燕子的耗氧量(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?思路点拨:该问题已经给出了函数模型,故赋值后可求出Q的值,进而求出v的值解:(1)由题知,当燕子静止时,它的速度v0,代入题给公式可得:05log2,解得Q10.即燕子静止时的耗氧量是10个单位(2)将耗氧量Q80代入题给公式得:v5log25log2815(m/s)即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.直接以对数函数为模型的应用题不是很多,此类问题一般是先给出对数函数模型,利用对数运算性质求解例7 某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边,上岸考察,然后又乘汽艇沿原航线提速返回设t为出发后的某一时刻,S为汽艇与码头在时刻t的距离,下列图象中能大致表示Sf(t)的函数关系的为(C)解析:当汽艇沿直线方向匀速开往该岛时,Svt,图象为一条线段;当环岛两周时,S两次增至最大,并减少到与环岛前的距离S0;上岛考察时,SS0;返回时,SS0vt,图象为一条线段所以选C.例8 用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要洗的次数是(B)A 3B 4C 5D 6解析:设至少要洗x次,则(1)x,所以x3.32,因此至少要洗4次例9 函数yf(x)与yg(x)的图象如图:则函数yf(x)g(x)的图象可能是(A)解析:明确函数图象在x轴上下方与函数值符号改变的关系,数值相乘“同号为正、异号为负”函数yf(x)g(x)的定义域是函数yf(x)与yg(x)的定义域的交集(,0)(0,),图象不经过坐标原点,故可以排除C、D.由于当x为很小的正数时f(x)0且g(x)0,故f(x)g(x)0.故选A.例 10 下列函数中,随x值的增大,增长速度最快的是(D)(A)y50x(xZ) (B)y1000x (C)y0.42x1 (D)yex解析:指数“爆炸式”增长,y0.42x1和yex虽然都是指数型函数,但yex的底数e较大些,增长速度更快例11 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,求这两个正三角形面积之和的最小值解析:设一个正三角形的边长为x(cm),则另一个正三角形的边长为4x(cm),两个正三角形的面积和为Sx2(4x)2(x2)24(0x4)当x2(cm)时,Smin2(cm2)例12 当2xx2log2x (B)x22xlog2x (C)2xlog2xx2 (D)x2log2x2x解析:法一:在同一平面直角坐标系中分别画出函数ylog2x,yx2,y2x,在区间(2,4)上从上往下依次是yx2,y2x,ylog2x的图象,所以x22xlog2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法可取x3,经检验易知选B.例13 已知函数的图象如图所示,试写出它的一个可能的解析式_解:可由图象的两点特征去确定第一点:过两定点(0,1),(10,3)第二点:增长情况答案:ylg(x21)1(x0)(答案不唯一)例14 奇瑞曾在2009年初公告:2009年生产目标定为39.3万辆;而奇瑞董事长极力表示有信心达成这个生产目标,并在09年实现更为平衡的增长我们不妨来看看近三年奇瑞的政绩吧:2006年,奇瑞汽车年销量8万辆;2007年,奇瑞汽车年销量18万辆;2008年,奇瑞汽车年销量30万辆;如果我们分别将06,07,08,09定义为第一,二,三,四年现在你有两个函数模型:二次函数模型f(x)ax2bxc(a0),指数函数模型g(x)abxc(a0,b0,b1),哪个模型能更好地反映奇瑞公司年销量y与年份x的关系?解:建立年销量y与年份x的函数,可知函数必过点(1,8),(2,18),(3,30)(1)构造二次函数模型f(x)ax2bxc(a0),将点坐标代入,可得解得a1,b7,c0,则f(x)x27x,故f(4)44,与计划误差为4.7.(2)构造指数函数模型g(x)abxc(a0,b0,b1),将点坐标代入,可得解得a,b,c42,则g(x)()x42,故g(4)()44244.4,与计划误差为5.1. 由(1)(2)可得,f(x)x27x模型能更好地反映奇瑞公司年销量y与年份x的关系例15 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳能电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%)(1)求2006年全球太阳能电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳能电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦假设以后若干年内太阳能电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳能电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?解:(1)由已知得2003,2004,2005,2006年太阳能电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳能电池的年生产量为6701.361.381.401.422499.8(兆瓦)(2)设太阳能电池的年安装量的平均增长率为x,则95%,解得x0.615. 因此,这四年中太阳能电池的年安装量的平均增长率至少应达到61.5%.例16 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案?例1涉及哪些数量关系?(投资天数 回报金额)如何用函数描述这些数量关系?三个函数模型的增减性如何?要对三个方案作出选择,就要对它们的增长情况进行分析,如何分析?(每天的回报数、增加量、累计回报数)例1累计回报表投资16天,应选择方案一;投资7天,应选择方案一或方案二;投资810天,应选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论