




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
注意:亦可利用矩阵的初等列变换求解逆矩阵.,事实上:因为,所以,2、利用矩阵的初等行变求解矩阵方程.,事实上,对于,若A可逆,则有,对应于:,即,例3.设AX=B,求X.其中,解若,可逆,则,所以,同理亦可求解矩阵方程,若,可逆,则有,即,例4.设A的伴随矩阵,且有,求B.,解:在,两边左乘,右乘A,得,即,因为,而,从而有,(*),故(*)式可改写为,即,所以,第三章小结,矩阵的初等变换与线性方程组,矩阵的初等换,初等方阵,矩阵的秩,线性方程组,矩阵的初等变换,概念,1.对换矩阵的i,j两行(列).,2.用k0乘矩阵的第i行(列).,3.把某i行(列)的k倍加到另一行(列)的对应元素上去.,性质,1.初等变换不改变矩阵的秩.,2.对A经过有限次初等变换得到B,则A等价B.,用途,求逆,,求矩阵A的秩、最简型、标准形.,初等方阵,性质,初等方阵都是可逆矩阵,其逆仍然是同种的初等矩阵.,对Amn矩阵实施一次行初等变换,相当于对A左乘一个相应的m阶初等方阵;对A实施一次列初等变换,相当于对A右乘一个相应的n阶初等方阵.,任何可逆矩阵都可以表为若干个初等方阵的乘积.,概念,对单位矩阵实施一次初等变换而得到的矩阵称为初等方阵.,三种初等变换对应三种初等方阵.,矩阵的秩,概念,k阶子式.,秩:矩阵非零子式的最高阶数.,性质,零矩阵的秩为零.,R(A)=R(AT),若B可逆,则R(AB)=R(A).,R(A+B)R(A)+R(B),R(AB)minR(A),R(B),R(AB)R(A)+R(B)-n,若AB=0,则R(A)+R(B)n,线性方程组,有非零解R(A)n.,求解,1.化系数矩阵为最简形.2.找等价的方程组.3.写通解.,有解R(A)=R(B).,求解,1.把增广矩阵B化为最简形.2.找等价的方程组.3.写通解.,Ax=0解的结构,Ax=0有唯一零解R(A)=r=n.,Ax=0有无穷多个非零解R(A)=rn.,其通解可表为:,为方程组的基础解系.,其中,Ax=b解的结构,Ax=b无解R(A)R(B),Ax=b有解R(A)=R(B)=r,1)当r=n时,方程组有唯一解.2)当rn时,方程组有无穷多解.且其通解可表为:,其中,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化创意产业园区品牌塑造与产业集聚的产业园区品牌战略规划
- 2025年智能交通系统在高速公路智能交通系统车联网与智能物流中的应用报告
- 2025年教育信息化基础设施建设:教育信息化产业创新趋势报告
- 信贷工作计划范文
- 江苏省苏州市2026届高三上学期期初阳光调研英语试卷(含音频)
- 《家具购买合同》模板
- 幽默安全培训讲义课件
- 巡察组联络员经验课件
- 岩石与矿物课件
- 输煤班组安全培训内容课件
- 两段炉讲座课件
- 泵送式桥塞与射孔联做技术介绍n课件
- 海南省危房改造对象认定表
- GB/T 8295-2008天然橡胶和胶乳铜含量的测定光度法
- 生产作业管理讲义
- 诗和词的区别课件
- 战现场急救技术教案
- 内蒙古电网介绍
- 气力输送计算
- 公共关系学授课教案
- 河北省城市集中式饮用水水源保护区划分
评论
0/150
提交评论