




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
理数课标版,第八节解三角形,1.用正弦定理和余弦定理解三角形的常见题型:测量距离、高度、角度问题,计算面积问题等.,教材研读,2.实际问题中的常用角(1)仰角和俯角与目标视线在同一铅垂平面内的水平线和目标视线的夹角,目标视线在水平线上方的角叫仰角,目标视线在水平线下方的角叫俯角(如图).,(2)方向角:一般指相对于正北或正南方向的水平锐角,如南偏东30,北偏西45等.(3)方位角从正北方向顺时针转到目标方向的水平角叫做方位角,如点B的方位角为(如图).(4)坡角:坡面与水平面所成的锐二面角.(附:坡度(坡比):坡面的铅直高度与水平长度之比),3.解关于解三角形的应用题的一般步骤(1)理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形问题;(3)根据题意选用正弦定理或余弦定理进行求解;(4)将所得结论还原到实际问题,注意实际问题中有关单位、近似计算等的要求.,1.从A处望B处的仰角为,从B处望A处的俯角为,则与的关系为()A.B.=C.+=90D.+=180答案B根据题意和仰角、俯角的概念画出草图,如图,可知=.,2.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20的方向上,灯塔B在观察站C的南偏东40的方向上,则灯塔A与灯塔B的距离为()A.akmB.akmC.akmD.2akm,答案BACB=180-(20+40)=120,在ABC中,AB2=AC2+BC2-2ACBCcos120=a2+a2-2a2=3a2,AB=a(km),故选B.,3.在上题的条件下,灯塔A相对于灯塔B的方向为()A.北偏西5B.北偏西10C.北偏西15D.北偏西20答案B易知B=A=30,C在B的北偏西40的方向上,又40-30=10,故灯塔A相对于灯塔B的方向为北偏西10.,4.在相距2千米的A、B两点处测量目标点C,若CAB=75,CBA=60,则A、C两点之间的距离为千米.答案解析ACB=180-75-60=45,由正弦定理得=,AC=千米.,5.一艘船自西向东匀速航行,上午10时到达灯塔P的南偏西75,距灯塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则此船航行的速度为海里/小时.答案解析如图,由题意知MPN=75+45=120,PNM=45.在PMN中,=,MN=68=34海里.,又由M到N所用的时间为14-10=4小时,此船的航行速度v=海里/小时.,考点一测量距离问题,考点突破,典例1(1)(2014四川,13,5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67,30,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin670.92,cos670.39,sin370.60,cos370.80,1.73),(2)如图,某观测站C在城A的南偏西20的方向上,从城A出发有一条走向为南偏东40的公路,在C处观测到距离C处31km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20km后到达D处,测得C,D两处的距离为21km,这时此车距离A城千米.,答案(1)60(2)15解析(1)设气球A在地面的投影为点D,则AD=46m,于是BD=ADtan(90-67)=4619.5m,DC=ADtan(90-30)=4679.6m,BC=DC-BD=79.6-19.560m.(2)在BCD中,BC=31km,BD=20km,CD=21km,由余弦定理得cosBDC=-,所以cosADC=,所以sinADC=.在ACD中,CD=21km,CAD=60,所以sinACD=sin(60+ADC)=+=.由正弦定理得=,所以AD=15km.,方法技巧求解距离问题的一般步骤(1)画出示意图,将实际问题转化成三角形问题;(2)明确所求的距离在哪个三角形中,有几个已知元素;(3)使用正弦定理、余弦定理解三角形(对于解答题,应作答).,1-1(2017安徽铜陵一中期末)如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A、B的距离,其方法是在A所在的岸边选定一点C,测出A、C的距离m,再借助仪器,测出ACB=,CAB=,在ABC中,运用正弦定理就可以求出AB.若测出AC=60m,BAC=75,BCA=45,则A,B两点间的距离为m.,答案20解析ABC=180-75-45=60,由正弦定理得,=,AB=20(m).即A,B两点间的距离为20m.,考点二测量高度问题典例2(2015湖北,13,5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD=m.,答案100解析依题意有AB=600,CAB=30,CBA=180-75=105,DBC=30,DCCB.ACB=45,在ABC中,由=,得=,有CB=300,在RtBCD中,CD=CBtan30=100,则此山的高度CD=100m.,易错警示解决高度问题的注意事项(1)在解决有关高度的问题时,要理解仰角、俯角的概念.(2)在实际问题中,可能会遇到同时研究空间与平面(地面)的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)一般是把高度问题转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题,则要注意空间图形和平面图形的结合.,2-1(2016湖北七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A,B两点处进行测量,在点A处测得塔顶C在西偏北20的方向上,仰角为60,在点B处测得塔顶C在东偏北40的方向上,仰角为30.,若A,B两点相距130m,则塔CD的高度为m.答案10,解析设CD=hm,则AD=m,BD=hm,在ADB中,ADB=180-20-40=120,由余弦定理得AB2=BD2+AD2-2BDADcos120,可得1302=3h2+-2h,解得h=10(负值舍去),故塔的高度为10m.,考点三测量角度问题典例3如图,在一次海上联合作战演习中,红方一艘侦察艇(位于A处)发现在北偏东45方向,相距12nmile的水面B处,有蓝方一艘小艇正以每小时10nmile的速度沿南偏东75方向前进,若红方侦察艇以每小时14nmile的速度,沿北偏东45+方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角的正弦值.,解析如图,设红方侦察艇在C处拦截住蓝方的小艇,且经过的时间为x小时,则AC=14x(nmile),BC=10 x(nmile),ABC=120.,根据余弦定理得(14x)2=122+(10 x)2-240 xcos120,解得x=2(负值舍去).故AC=28(nmile),BC=20(nmile).根据正弦定理得=,解得sin=.综上,要使红方侦察艇在最短的时间内拦截住蓝方小艇,则所需要的时间为2小时,角的正弦值为.,易错警示解决测量角度问题的注意事项(1)明确方向角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合运用.,3-1如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30,相距20海里的C处的乙船,现乙船朝北偏东的方向沿直线前往B处救援,求cos的值.,解析在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》能力检测试卷附答案详解【巩固】
- 2025呼伦贝尔莫力达瓦达斡尔族自治旗尼尔基第一中学校园引才笔试备考有完整答案详解
- 未包括的互联网服务创新创业项目商业计划书
- 用户生成图文故事创作平台创新创业项目商业计划书
- 低温耐受性马铃薯品种研究创新创业项目商业计划书
- 教师招聘之《幼儿教师招聘》考试模拟试卷附参考答案详解【夺分金卷】
- 教师招聘之《幼儿教师招聘》考前冲刺测试卷附有答案详解及参考答案详解【达标题】
- 智能制造数字化全产业链解决方案
- 教师招聘之《幼儿教师招聘》强化训练模考卷及答案详解【名校卷】
- 2025年四川宜宾市珙县事业单位选调13人笔试备考题库附答案详解
- 常用玻璃仪器操作规范课件
- 《青纱帐-甘蔗林》教案- 2023-2024学年高教版(2023)中职语文基础模块下册
- TCRHA 063.1-2024 消毒供应质量管理及评价 第1部分:外包消毒供应业务
- 水资源论证、水土保持、防洪评价收费标准
- 攻读工程博士专业学位研究计划书【模板】
- NBT 10643-2021 风电场用静止无功发生器技术要求与试验方法-PDF解密
- 初中英语单词表(For-Junior)2182个 带音标
- 人教鄂教版六年级上册科学全册教案
- 财务工作内部培训课件
- 网络安全意识培训
- 建筑艺术赏析(职业通用)全套教学课件
评论
0/150
提交评论