




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题一,第一讲,思想方法概述,应用角度例析,通法归纳领悟,专题专项训练,角度一,角度二,角度三,角度四,角度五,1函数与方程思想的含义(1)函数的思想:函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图像变换等,(2)方程的思想:方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题得以解决方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题方程思想是动中求静,研究运动中的等量关系,2函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决,方程问题也可以转化为函数问题加以解决,如解方程f(x)0,就是求函数yf(x)的零点,解不等式f(x)0(或f(x)0,f(x)是增函数;当x(1,3)时,f(x)(x21)m对m2,2恒成立,求实数x的取值范围,函数与方程思想在数列中的应用,答案C,(1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意用函数的思想求解.),6已知an为等差数列,a1a3a5105,a2a4a699,以Sn表示an的前n项和,则使得Sn达到最大值的n是()A21B20C19D18,B,C,函数与方程思想在解析几何中的应用,解析几何是借用坐标系用代数法研究几何图形的科学分支,用构造方程的方法解决解析几何问题非常简便,本题中的第(2)问用方程思想解决问题是非常典型的,要熟练掌握,应用函数与方程思想解决问题时应注意以下几个方面的思考和切入(1)函数与不等式的相互转化对函数yf(x),当y0时,就化为不等式f(x)0,借助于函数的图像和性质可解决有关问题,而研究函数的性质也离不开不等式(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要,(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决这都涉及二次方程与二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海个人租房合同协议书
- 全方位学科探索
- 销售全职合同范本
- 离职审计协议
- 绿化工程图纸与预算合同
- 2025标准版带期限借款合同范本
- 2025合作合同模板项目退出协议
- 2025定制床单、被罩合同
- 苗木供应合同管理
- 苗木种类采购合同
- 2024江西省高考生物真题卷及答案
- 探视权起诉书范文
- 《煤炭工业半地下储仓建筑结构设计标准》
- 2024年一带一路暨金砖国家技能发展与技术创新大赛(无人机装调与应用赛项)考试题库(含答案)
- 《医疗器械监督管理条例》知识竞赛考试题库300题(含答案)
- 国开(青海)2024年《刑法学#》形考任务1-4答案
- 山东省济南市市中区2023-2024学年八年级下学期期末数学试题
- 高压旋喷桩施工技术交底
- DL-T5024-2020电力工程地基处理技术规程
- 《插花与花艺设计》课件-项目六 创意插花
- 2024年上海市普通高中学业水平等级性考试化学试卷(含答案)
评论
0/150
提交评论