高考数学一轮复习 第十章 统计 10.1 随机抽样课件 文.ppt_第1页
高考数学一轮复习 第十章 统计 10.1 随机抽样课件 文.ppt_第2页
高考数学一轮复习 第十章 统计 10.1 随机抽样课件 文.ppt_第3页
高考数学一轮复习 第十章 统计 10.1 随机抽样课件 文.ppt_第4页
高考数学一轮复习 第十章 统计 10.1 随机抽样课件 文.ppt_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第十章统计,10.1随机抽样,内容索引,基础知识自主学习,题型分类深度剖析,审题路线图系列,思想方法感悟提高,练出高分,基础知识自主学习,1.简单随机抽样(1)定义:从个体数为N的总体中取出n个个体作为样本(nN),如果每个个体都有的机会被取到,那么这样的抽样方法称为简单随机抽样.(2)最常用的简单随机抽样的方法:和.,逐个不放回地,相同,抽签法,随机数表法,知识梳理,1,答案,2.系统抽样(1)定义:将总体分成几个部分,然后按照一定的规则,从每个部分中抽取个体作为样本,这样的抽样方法称为系统抽样.(2)假设要从容量为N的总体中抽取容量为n的样本,系统抽样的步骤为:采用随机的方法将总体中的N个个体;,平均,一个,编号,这时取k,并将剩下的总体重新编号;,答案,(3)在第一段中用简单随机抽样确定起始的个体编号;(4)按照一定的规则抽取样本,通常将编号为的个体抽出.3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按分成层次比较分明的几个部分,然后按各个部分在总体中实施抽样,这种抽样方法叫,所分成的各个部分称为“层”.,l,l,lk,l2k,l(n,1)k,不同的特点,所占的比,分层抽样,答案,(2)分层抽样的步骤是:将总体分层;计算各层的的比;按各层个体数占总体的个体数的比确定各层应抽取的;在每一层进行抽样(可用简单随机抽样或系统抽样).(3)分层抽样的应用范围:当总体由组成时,往往选用分层抽样.,按一定标准,个体数与总体的个体数,样本容量,差异明显的几个部分,答案,判断下面结论是否正确(请在括号中打“”或“”)(1)简单随机抽样是一种不放回抽样.()(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(3)系统抽样在起始部分抽样时采用简单随机抽样.()(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(),思考辨析,答案,1.(教材改编)某公司有员工500人,其中不到35岁的有125人,3549岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为_.,解析因为12528095255619,所以抽取人数分别为25人,56人,19人.,25,56,19,考点自测,2,解析答案,1,2,3,4,5,2.(2015四川改编)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是_.,解析根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.,分层抽样,解析答案,1,2,3,4,5,3.将参加英语口语测试的1000名学生编号为000,001,002,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,019,且第一组随机抽取的编号为015,则抽取的第35个编号为_.,解析由题意可知,第一组随机抽取的编号l15,,则抽取的第35个编号为a3515(351)20695.,695,解析答案,1,2,3,4,5,4.(教材改编)某公司共有1000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为_.,50,解析答案,1,2,3,4,5,5.(2014天津)某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生.,60,1,2,3,4,5,解析答案,返回,题型分类深度剖析,例1(1)总体由编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为_.,解析由题意知前5个个体的编号为08,02,14,07,01.,01,题型一简单随机抽样,解析答案,(2)下列抽取样本的方式不属于简单随机抽样的有_.从无限多个个体中抽取100个个体作为样本.盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.从20件玩具中一次性抽取3件进行质量检验.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.,解析不是简单随机抽样.不是简单随机抽样.由于它是放回抽样.不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.,解析答案,思维升华,应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.,思维升华,下列抽样试验中,适合用抽签法的有_.从某厂生产的5000件产品中抽取600件进行质量检验;从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;从某厂生产的5000件产品中抽取10件进行质量检验.,解析,中的总体中个体数较多,不适宜抽签法,中甲、乙两厂的产品质量有区别,也不适宜抽签法.,跟踪训练1,解析答案,例2(1)(2015湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是_.,题型二系统抽样,解析答案,解析由题意知,将135号分成7组,每组5名运动员,成绩落在区间139,151的运动员共有4组,故由系统抽样法知,共抽取4名.,答案4,(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为_.,12,解析答案,1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是_.,解析在第八组中抽得的号码为(83)2044144.,144,引申探究,解析答案,2.本例(2)中条件不变,若在编号为481,720中抽取8人,则样本容量为_.解析因为在编号481,720中共有720480240人,又在481,720中抽取8人,所以抽样比应为2408301,又因为单位职工共有840人,,28,解析答案,思维升华,(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.,思维升华,将参加夏令营的600名学生编号为001,002,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,三个营区被抽中的人数依次为_.,跟踪训练2,解析答案,解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN*)组抽中的号码是312(k1).,因此第营区被抽中的人数是25;,因此第营区被抽中的人数是422517.故抽取三个营的人数分别为25,17,8.,答案25,17,8,命题点1求总体或样本容量,例3某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n_.,13,题型三分层抽样,解析答案,命题点2求某层入样的个体数,例4(2015福建)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_.,解析由题意知,男生共有500名,,25,解析答案,思维升华,分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.,思维升华,(1)(2014广东改编)已知某地区中小学生人数和近视情况分别如图和图所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为_.,跟踪训练3,解析答案,解析该地区中小学生总人数为35002000450010000,则样本容量为100002%200,其中抽取的高中生近视人数为20002%50%20.答案200,20,(2)(2014湖北)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为_件.,解析设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4800x)件.,1800,解析答案,返回,审题路线图系列,典例(14分)某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:,审题路线图系列,五审图表找规律,(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?,温馨提醒,返回,审题路线图,解析答案,审题路线图,抽取40人调查身体状况(观察图表中的人数分类统计情况)样本人群应受年龄影响(表中老、中、青分类清楚,人数确定)要以老、中、青分层,用分层抽样要开一个25人的座谈会(讨论单位发展与薪金调整),温馨提醒,审题路线图,解析答案,样本人群应受管理、技术开发、营销、生产方面的影响(表中管理、技术开发、营销、生产分类清楚,人数确定)要以管理、技术开发、营销、生产人员分层,用分层抽样要抽20人调查对广州亚运会举办情况的了解可认为亚运会是大众体育盛会,一个单位人员对情,况了解相当将单位人员看作一个整体(从表中数据看总人数为2000人)人员较多,可采用系统抽样,温馨提醒,解析答案,规范解答解(1)按老年、中年、青年分层,用分层抽样法抽取,,故老年人、中年人、青年人各抽取4人、12人、24人.5分,温馨提醒,解析答案,(2)按管理、技术开发、营销、生产分层,用分层抽样法抽取,,故管理、技术开发、营销、生产各部门抽取2人、4人、6人、13人.10分,温馨提醒,解析答案,(3)用系统抽样,对全部2000人随机编号,号码从00012000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,1900,共20人组成一个样本.14分,温馨提醒,(1)本题审题的关键有两点,一是对图表中的人员分类情况和数据要审视清楚;二是对样本的功能要审视准确.(2)本题易错点是,对于第(2)问,由于对样本功能审视不准确,按老、中、青三层分层抽样.,返回,温馨提醒,思想方法感悟提高,1.简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.2.系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.,方法与技巧,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.,失误与防范,返回,练出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是_.简单随机抽样;按性别分层抽样;按学段分层抽样;系统抽样.,解析不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.,解析答案,2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为_.,8,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,2505,9,100,107,111,121,180,195,200,26511,38,65,92,119,146,173,200,227,25430,57,84,111,138,165,192,219,246,270,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,关于上述样本的下列结论中,正确的是_.(填字母)a.、都不能为系统抽样b.、都不能为分层抽样c.、都可能为系统抽样d.、都可能为分层抽样,解析因为为系统抽样,所以a不对;因为为分层抽样,所以b不对;因为不为系统抽样,所以c不对.,d,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,4.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是_.5,10,15,20,253,13,23,33,431,2,3,4,52,4,6,16,32,解析间隔距离为10,故可能的编号是3,13,23,33,43.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,5.(2015北京改编)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,答案180,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,6.某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生.,解析抽取比例与学生比例一致.设应从高二年级抽取x名学生,则x50310.解得x15.,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,7.某校共有学生2000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,解析依题意可知二年级的女生有380人,那么三年级的学生人数应该是2000373377380370500,即总体中各个年级的人数比为332,,答案16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,8.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1160编号,按编号顺序平均分成20组(18号,916号,153160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是_.解析由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x(n1)8,所以第16组应抽出的号码为x(161)8123,解得x3,所以第2组中应抽出个体的号码为3(21)811.,11,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,9.将某班的60名学生编号为01,02,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是_.,因为在第一组抽得04号:41216,161228,281240,401252,所以其余4个号码为16,28,40,52.,16,28,40,52,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,解用分层抽样方法抽取.具体实施抽取如下:,从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)副处级以上干部与工人的人数较少,他们分别按110编号与120编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.,11.(2014湖南改编)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则_.p1p2p3p2p3p1p1p3p2p1p2p3,解析由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1p2p3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,12.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为_.,抽取的号码依次为9,39,69,939.落入区间451,750的有459,489,729,这些数构成首项为4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论