




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,5.1确知信号的复信号表示,5.2希尔伯特变换,5.3复随机过程,5.4窄带随机过程的统计特性,第五章窄带随机过程,5.5窄带高斯过程的包络和相位分布,5.6卡方分布及非中心卡方分布,5.5窄带高斯随机过程包络与相位的分布在许多实际电子系统或电路中,我们经常遇到这样的情况,用一个宽带随机过程激励一个高频窄带线性系统(或简称窄带滤波器)。如图5.5.1所示。,图5.5.1窄带高斯过程的的产生,5.5.1包络和相位的一维概率密度假设是一窄带平稳高斯实随机过程,具有零均值和方差,则有以下关系在任一给定的时刻,对A(t)和采样,便可得到随机变量和。,将由式所表示的之间的函数关系记为相应的反变换关系为,一、求为求得,先来研究的某些统计特性。1.都是高斯随机变量。2.的均值皆为零,即3.具有相同的方差,且都等于Y(t)的方差。4.相互独立。应用的性质可得即正交。,包络和相位的一维分布,5.于是可得的联合概率密度函数为:,二、求利用式中J为雅可比因子,可得,三、求通过对求边沿概率密度,便可得到上式给出了包络A(t)的一维概率密度函数表达式,通常将它称为瑞利分布,其图形如图5.5.2所示。,图5.5.2瑞利概率密度函数,同理,的一维概率密度函数为可见,随机相位在区间呈均匀分布。比较以上三式,还可以得到上式告诉我们,在同一时刻t,随机变量相互独立,但也应注意,这并不意味着随机过程相互独立。,求解包络和相位的二维概率密度步骤:一、求出四维密度二、求各自的联合概率密度三、求二维边缘概率密度和,包络和相位的二维分布,(1)求四维分布,对于确定的时刻t,皆为零均值、方差为2的高斯变量。根据多维高斯随机变量的概率密度公式可得:,12,其中,其中,把以上带入到多维变量的概率密度公式中可得:,(2)求联合概率密度,其中,雅克比为,从而可得:,(3)包络的二维概率密度,(4)相位的二维概率密度,式中,根据(2)、(3)、(4)可得:,这就表明,窄带高斯过程的包络和相位不是统计独立的随机过程。,5.5.2正弦型信号与窄带高斯噪声之和的包络及相位的概率密度假设X(t)=S(t)+N(t)其中,S(t)为具有相位的正弦型信号,即式中,为已知常数,区间均匀分布的随机变量。N(t)为平稳窄带实高斯随机过程,具有零均值和方差。称N(t)为噪声。并设它的功率谱密度对称与。很明显,X(t)也是一个窄带随机过程。,其中N(t)表达式为:其中,,所以有:,根据上节的分析可知,NC(t)和NS(t)服从高斯分布,所以对于任意的和t,AC(t)和AS(t)也是高斯分布并且相互独立。在值给定的情况下,它们的均值和方差分别为:,于是可得的联合概率密度函数为:,于是可得X(t)的包络和相位联合概率密度函数为:,包络概率密度函数为:,该式表明,窄带高斯噪声加正弦信号的包络服从广义瑞利分布或者莱斯分布。,当信噪比很小时,即,当信噪比很大时,即,在大噪声条件下,包络At趋近与高斯分布。,随着信噪比的减少,广义瑞利分布趋向于瑞利分布。,相位概率密度函数为:,式中为概率积分函数。,当=0时,相位变成均匀分布,这相当于窄带高斯噪声的情况。当信噪比很多时,则相位的条件概率密度近似为:,5.5.3窄带高斯过程包络平方的概率密度在许多实际应用中,常常在高频窄带滤波器的输出端接入一平方律检波器,如图5.5.3所示。在平方律检波器输出端便得到包络的平方。,图5.5.3高频窄带滤波器加平方检波器,(1)窄带高斯噪声包络平方的概率密度当窄带随机过程为一具有零均值、方差为的平稳高斯噪声时,其包络A(t)的一维概率密度为瑞利密度函数令由此得到雅可比因子为,于是上式表明,的概率密度为指数密度函数。,(2)正弦型信号加窄带高斯噪声包络平方的概率密度当窄带随机过程为正弦型信号加窄带高斯噪声时,即,经过推导可得包络平方的一维概率密度为:,由前面的分析可知,该窄带过程包络的概率密度为:,令,可得归一化随机变量的概率密度函数为:,在无线通信系统中,构成一个包络检波器要比构成一个平方律检波器容易,实际应用也很多。实践证明,平方律检波器与包络检波器的性能差别甚小。,5.6分布和非中心分布一、分布,视频信号积累原理图,假设有n个统计独立的高斯分布随机变量X1,X2,,Xn,它们都是零均值和单位方差,于是可以将这些变量的平方和表示为:,则称随机变量为服从n个自由度的变量,它的分布称为分布。,随机变量Xi是服从标准高斯分布的,即,令Y=Xi2,即有,其对应的特征函数为:,由于相互独立的随机变量之和的特征函数等于各随机变量的特征函数之积,由此可得:,对特征函数进行傅里叶反变换即可得到n个自由度的的的概率密度,,式中,为的函数。即,,几个不同自由度下的图形。,变量的概率密度函数,分布的性质:(1)两个独立的变量之和仍为变量。(2)由特征函数与矩的关系,可求得n个自由度的变量的均值和方差,假设有n个统计独立的高斯分布随机变量X1,X2,,Xn,它们都是零均值和单位方差,则称,具有n个自由度的非中心分布。,二、非中心分布,二、非中心分布自由度为n的非中心分布,的概率密度为式中,非中心参量表示视频积累后的功率信噪比。,在图5.6.1中画出了不同信噪比和样本数n情况下的非中心函数。,图5.6.1非中心变量的概率密度函数,非中心分布的性质:(1)两个统计独立的非中心变量之和仍为非中心变量。若它们的自由度分别为;非中心参量分别为,则和变量的自由度为;非中心参量为(2)非中心变量的均值和方差分别为,例5.1设图中加至平方律
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同主体变更权责协议书
- 代驾外包合同协议书范本
- 保温楼地面施工合同范本
- 厂房带鱼池出租合同范本
- 企业股权托管协议书范本
- 公司账号代运营合同范本
- 公路施工承包合同协议书
- 中药半成品收购合同范本
- 一家人签署过一份协议书
- web前端劳动合同范本
- 设备购销合同详细范本
- 国家基层糖尿病神经病变诊治指南(2024版)
- 人体常见病 知到智慧树网课答案
- 2024骨髓移植患者营养治疗专家共识(全文)
- HGT 3652-1999(2009) 快装管接头标准规范
- 如何正确使用和佩戴劳动防护用品培训课件
- 《应收应付管理》课件
- 重症医学资质培训血流动力学监测和应用
- 《文化经济学》课件
- 《MySQL网络数据库项目化教程(新形态活页式)》 课件 3.1.1 -3.1.2创建和管理数据库
- 学校中层干部的职责和角色定位
评论
0/150
提交评论