




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,5.2平行线及其判定,第五章相交线与平行线,导入新课,讲授新课,当堂练习,课堂小结,5.2.2平行线的判定,第1课时平行线的判定,学习目标,1.掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行;(重点),2.能够根据平行线的判定方法进行简单的推理.,问题1两条不重合的直线的位置关系有哪几种?,问题2怎样的两条直线平行?,问题3上节课你学了平行线的哪些内容?,相交(包括垂直)和平行两种.,在同一平面内,不相交的两条直线平行.,2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.,1.经过直线外一点,有且只有一条直线与已知直线平行.,导入新课,回顾与思考,思考根据平行线的定义,如果同一平面内的两条直线不相交,就可以判断这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据两条直线是否相交来判定是否平行,那么有没有其他判定方法呢?,一、放,二、靠,三、推,四、画,我们已经学习过用三角尺和直尺画平行线的方法.,讲授新课,b,A,2,1,a,B,(1)画图过程中,什么角始终保持相等?,(2)直线a,b位置关系如何?,思考,(3)将其最初和最终的两种特殊位置抽象成几何图形:,(4)由上面的操作过程,你能发现判定两直线平行的方法吗?,判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.,简单说成:同位角相等,两直线平行.,应用格式:,1=2(已知)l1l2(同位角相等,两直线平行),总结归纳,实验验证,练习:下图中若1=55,2=55,直线AB、CD平行吗?为什么?,A,C,E,F,B,D,1,2,平行.同位角相等,两直线平行.,变式1:如图,1=55,2=125,直线AB与CD平行吗?为什么?,A,C,E,F,B,D,1,2,M,N,平行.同位角相等,两直线平行.,变式2:如图,直线AB与CD被直线EF所截,1=55,请添加一个条件使得直线AB与直线CD平行.,A,C,E,F,B,D,1,3,2,5,4,3=55,你能说出木工师傅用图中的角尺工具画平行线的道理吗?,练一练,同位角相等,两直线平行.,问题1两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?,如图,由3=2,可推出a/b吗?如何推出?,解:1=3(已知),3=2(对顶角相等),1=2.a/b(同位角相等,两直线平行).,判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.,简单说成:内错角相等,两直线平行.,3=2(已知)ab(内错角相等,两直线平行),应用格式:,总结归纳,问题2如图,如果1+2=180,你能判定a/b吗?,c,解:能,1+2=180(已知)1+3=180(邻补角的性质)2=3(同角的补角相等)a/b(同位角相等,两直线平行),判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.,简单说成:同旁内角互补,两直线平行.,应用格式:,1+2=180(已知)ab(同旁内角互补,两直线平行),总结归纳,2=6(已知)_(),3=5(已知)_(),4+_=180o(已知)_(),AB,CD,AB,CD,5,AB,CD,A,C,1,4,2,3,5,8,6,7,B,D,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,F,E,典例精析,例1:根据条件完成填空.,1=_(已知)ABCE(),1+_=180o(已知)CDBF(),1+5=180o(已知)_(),AB,CE,2,4+_=180o(已知)CEAB(),3,3,1,3,5,4,2,C,F,E,A,D,B,内错角相等,两直线平行,同旁内角互补,两直线平行,同旁内角互补,两直线平行,同旁内角互补,两直线平行,练一练:根据条件完成填空.,ABMN(内错角相等,两直线平行.),解:,MCA=A(已知),又DEC=B(已知),ABDE(同位角相等,两直线平行.),DEMN(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.),例2:如图,已知MCA=A,DEC=B,那么DEMN吗?为什么?,已知3=45,1与2互余,试说明?,解:1=2(对顶角相等)1+2=90(已知)1=2=453=45(已知)2=3ABCD(内错角相等,两直线平行),AB/CD,练一练,做一做,内错角相等,两直线平行.,同旁内角互补,两直线平行.,做一做,同位角相等,两直线平行.,内错角相等,两直线平行.,同旁内角互补,两直线平行.,1.如图,可以确定ABCE的条件是()A.2=BB.1=AC.3=BD.3=A,C,当堂练习,2.如图,已知1=30,2或3满足条件_,则a/b.,2150或330,3.如图.(1)从1=4,可以推出,理由是.,(2)从ABC+=180,可以推出ABCD,理由是.,AB,内错角相等,两直线平行,CD,BCD,同旁内角互补,两直线平行,(3)从=,可以推出ADBC,理由是.,(4)从5=,可以推出ABCD,理由是.,2,3,内错角相等,两直线平行,ABC,同位角相等,两直线平行,理由如下:AC平分DAB(已知)1=2(角平分线定义)又1=3(已知)2=3(等量代换)ABCD(内错角相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上饶预制化粪池施工方案
- 卸车指挥工设备维护与保养考核试卷及答案
- 中药灸熨剂工三级安全教育(班组级)考核试卷及答案
- 药械科不良安全事件培训课件
- 信息传播策略优化分析报告
- 2025版司法局《涉嫌抢劫罪的法律意见书》(空白模板)
- 精密过滤器施工方案
- 门面装饰工程施工方案
- 咨询公司项目规划方案
- 城市建筑纸浆配送方案设计
- 10.1 抵制校园欺凌和暴力(高效教案)-【中职专用】中职思想政治《心理健康与职业生涯》(高教版2023·基础模块)
- 社区获得性肺炎教学课件
- 大学语文(第三版)课件 渔父
- 队列训练齐步的行进与立定
- 人教版小学六年级数学上册单元课后练习题 全册
- 初中九年级英语课件宾语从句 公开课比赛一等奖
- 【放心签】家政服务电子版合同范本(仅供参考)正规范本(通用版)
- 景区不锈钢浮雕施工方案
- 造价咨询部工作手册
- 湖北省行政区划代码
- 数字电路逻辑设计(第3版)PPT全套完整教学课件
评论
0/150
提交评论