




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常考问题13立体几何中的向量方法,真题感悟考题分析,1直线与平面、平面与平面的平行与垂直的向量方法设直线l的方向向量分别为a(a1,b1,c1),平面,的法向量分别为(a2,b2,c2),v(a3,b3,c3),则(1)线面平行laa0a1a2b1b2c1c20.,(2)线面垂直laaka1ka2,b1kb2,c1kc2.(3)面面平行vva2a3,b2b3,c2c3.(4)面面垂直v0a2a3b2b3c2c30.,(3)二面角如图所示,二面角-l-,平面的法向量为n1,平面的法向量为n2,n1,n2,则二面有-l-的大小为-或.,3用向量法证明平行、垂直问题的步骤(1)建立空间图形与空间向量的关系(可以建立空间直角坐标系,也可以不建系),用空间向量表示问题中涉及的点、直线、平面(2)通过向量运算研究平行、垂直问题(3)根据运算结果解释相关问题4空间向量求角时考生易忽视向量的夹角与所求角之间的关系(1)求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,而不是线面角的余弦;(2)求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析,热点一向量法证明平行与垂直【例1】如图,在直三棱柱ABC-A1B1C1中,ABC为等腰直角三角形,BAC90,且ABAA1,D,E,F分别为B1A,C1C,BC的中点求证:(1)DE平面ABC;(2)B1F平面AEF.,热点与突破,规律方法证明平行、垂直关系时,若用传统的几何法,难以找出问题与条件的关系时,可采用向量法,但向量法要求计算必须准确无误,利用向量法的关键是正确求平面的法向量,【训练1】如图,在直三棱柱ADEBCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点求证:(1)OM平面BCF;(2)平面MDF平面EFCD.,解如图所示,建立空间直角坐标系,点B为坐标原点依题意得,规律方法异面直线所成角的余弦等于两条异面直线方向向量夹角余弦的绝对值;线面所成角的正弦等于平面的法向量与直线方向向量夹角余弦的绝对值;二面角平面角余弦与二面角两平面法向量夹角的余弦绝对值相等,其正负可以通过观察二面角是锐角还是钝角进行确定,【训练2】(2013新课标全国卷)如图,在三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,ABCB2,求直线A1C与平面BB1C1C所成角的正弦值,热点三利用空间向量解决探索性问题【例3】如图,在长方体ABCD-A1B1C1D1中,AA1AD1,E为CD的中点(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30,求AB的长,规律方法空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题,审题示例(七)利用向量法解与“夹角”有关的存在性问题,方法点评与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“有关参数的方程是否有解,或是否有规定范围内的解”的问题等事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法,针对训练如图,在直三棱柱ABC-A1B1C1中,ACB90,E是棱CC1上动点,F是AB中点,ACBC2,AA14.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胆囊切除术后夹管护理
- 《诫子书》课件公开课
- 硬膜外钻孔引流术护理
- 联通小CEO个人年终总结
- 亲子共读讲座课件
- 公司级安全生产培训课件
- 教师教育课程标准解读
- 《蒙娜丽莎》课件
- 麻醉科等级评审工作汇报
- 生产质量主管年终总结
- (一检)泉州市2026届高三高中毕业班质量监测(一)数学试卷(含标准答案)
- 大学英语四级单词表
- 实验动物从业人员上岗证考试题库(含近年真题、典型题)
- 印制电路板(PCB)的设计与制作课件
- 涨停战法研究精华总结(经常复读-多有收获)
- 数据安全事件应急预案
- 祁县昌源河湿地公园工程建设可研报告(1800万元)
- 关于村两委工作职责与分工【五篇】
- 现代汉语全套课件
- 智慧农业信息化解决方案
- 生物基础电子教案分享
评论
0/150
提交评论