




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学课堂教学设计研究,人民教育出版社中学数学室章建跃Zhangjy,数学课堂教学设计研究,一、教育观与教学设计二、教学设计的内涵三、关于教学目标的思考四、教学设计的基本原则五、课堂教学结构的选择六、课堂教学设计的基本环节七、直线的参数方程的教学设计,一、教育观与课堂教学设计,教育观:以学生为本本质与核心:以学生的发展为本促进学生身心的全面、和谐与可持续发展注重个性差异,追求教学质量和课堂效益“以学生为本”的教育观体现了社会发展的新要求,体现基础教育性质的变化,是教学设计的根本指导思想,二、教学设计的内涵,教学设计是教师为达到教学目标而对课堂教学过程与行为所进行的系统规划。主要解决“教什么”和“怎么教”两个问题。,教学需要设计的主要理由,由学校教育的性质决定的。学生智力的发展依赖于科学的、规律性的知识和有目的、有计划、有指导的启发式教学。教师在教学中的主导地位必须强调。只讲教师是教学的组织者、引导者、合作者是不够的。,实现教学过程科学化的需要。目的:提高教学质量和效益使学生以尽量少的时间、精力等的投入获得尽量多的收获。教学过程科学化体现了对教师的专业化要求。,三、关于教学目标的思考教学目标是教学目的的系统化、具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。教学目标的设计必须建立在对学生情况全面了解、对教学内容精确分析的基础上。教学目标必须是可观察的。,关于教学目标分类的思考三层级模型第一层级主成分以记忆为主要标志,培养的是以记忆为主的基本能力。测试看基本事实、方法的记忆水平,标准是:获得的知识量以及掌握的准确性。第二层级主成分以理解为主要标志,培养的是以理解为主的基本能力,测试看能否顺利地解决常规性、通用性问题,包括能否满意地解决综合性问题。测试标准是:运用知识的水平,如正确、敏捷、灵活、深刻等。,第三层级主成分以探究为主要标志,培养以评判为主的基本能力,测试看能否对解决问题的过程进行反思,即检验过程的正确性、合理性及其优劣。标准是思维的深刻性、批判性、全面性、独创性等。,陈述教学目标的要求,反映数学的学科特点,反映当前学习内容的本质。可观测:清楚陈述学习后有什么变化。例1掌握一元二次方程根的判别式。对“掌握”的内涵作具体界定。重要概念要考虑作适当分解:(1)在用配方法推导一元二次方程求根公式的过程中,掌握判别式的结构和作用;(2)能用判别式判断一个一元二次方程是否有解;(3)能用判别式讨论一个含字母系数的一元二次方程的解;(4)能灵活应用判别式解决其他情境中的问题。,例2理解函数单调性概念。这一陈述中,需要对“理解”的含义作具体界定,以使我们能准确把握学生是否已经达到“理解”。实际上,“理解”的基本含义是学生能用概念作出判断。因此可以改述为:能给出增函数、减函数的具体例证和图象特征;能用函数单调性定义判断一个函数的单调性。,要防止教学目标“高大全”,有的甚至是“假大空”,目标“远大”、空洞,形同虚设。例如,一堂课的目标中含有:培养学生的数学思维能力和科学的思维方式;培养学生勇于探索、创新的个性品质;体验数学的魅力,激发爱国主义热情;等等。,四、教学设计的基本原则,1.情意原则激发学习动机,提高学习兴趣(1)问题性;(2)思维最近发展区内的学习任务;(3)使用“反馈调节”机制。,例3“诱导公式”教学中几种提问的比较。,你能利用圆的几何性质推导出三角函数的诱导公式吗?的终边、+180的终边与单位圆的交点有什么关系?能由此得出sin与sin(+180)之间的关系吗?我们可以通过查表求锐角三角函数值,那么,如何求任意角的三角函数值呢?能否将任意角的三角函数转化为锐角三角函数?,问题情境:三角函数与(单位)圆是紧密联系的,它的基本性质是圆的几何性质的代数表示,例如,同角三角函数的基本关系表明了圆中的某些线段之间的关系。圆有很好的对称性:以圆心为对称中心的中心对称图形;以任意直径为对称轴的轴对称图形。你能否利用这种对称性,借助单位圆,讨论一下终边与角的终边关于原点、x轴、y轴以及直线y=x对称的角与角的关系以及它们的三角函数之间的关系?,2结构化原则教学内容结构化,保持思想方法的前后一致性,结构化教学内容的特点核心知识(基本概念及由内容所反映的数学思想方法)为联结点,精中求简,易学、好懂、能懂、会用,能切实减轻学生负担;形成概念的网络系统,联系通畅,便于记忆与检索;具有自我生长的活力,容易在新情境中引发新思想和新方法。,“结构化”的几个具体要求,(1)教学目标明确,削支强干,重点突出,集中精力于核心内容。(2)教学内容安排注重层次结构,张弛有序,循序渐进。由浅入深,由易到难,先简后繁,先单一后综合。(3)每堂课都围绕一个中心论题展开和深化,精心组织相关的数学成分,使相应的核心概念或重要思想成为一个有机整体,相关的数学术语、定义、符号、概念、技能等因素都得到仔细的展开;课与课之间建立精当的序列关系,保持知识的连贯性,思想方法的一致性。易错、易混淆的问题有计划地复现和纠正,使知识得到螺旋式的巩固和提高。,例4平面向量的结构化教学设计,代数角度位置位移向量向量的加法向量的减法和数乘运算运算律几何角度一个点A、一个方向e可以定性刻画一条直线;引进向量数乘运算ke,那么直线上每一个点X就可以定量表示为k1e;,一个点A、两个不平行的方向e1,e2在“原则”上确定了平面(定性刻画);引入向量的加法运算e1+e2,那么平面上每一个点X就可以定量表示为k1e1+k2e2。向量的数量积ab=|a|b|cos,使几何中讨论的长度、角度、面积等转化为对向量的表达和运算。空间的基本性质和几何的基本定理都能有系统地转换成向量代数中的运算律。,平面向量教学的结构系列,(1)借助位移、有向线段引入向量概念;(2)借助位移合成定义向量加法运算;类比数的减法、乘法运算引进向量的减法运算和数乘运算;(3)向量运算的几何意义,运算律及其几何含义;(4)从度量长度、角度等的需要出发,引入向量的数量积概念,考察其几何意义,运算律;(5)与解析法建立联系,考察向量的分解(平面向量基本定理)及坐标表示,并考察在坐标表示下的一些基本问题(向量运算的坐标表示,向量度量关系的坐标表示,等等)。,关于概念教学的一些要求,(1)采取“归纳式”进行概念教学,让学生经历概念的概括过程;(2)正确、充分地提供概念的变式;(3)适当应用反例;(4)在概念的系统中学习概念,建立概念的“多元联系表示”;(5)精心设计练习。,3过程性原则按照知识的发生发展过程和学生的认知过程,精心设计概括活动,(1)通过分析“两个过程”,明确概括过程的主导思路,围绕这条思路确定猜想和发现的方案;(2)在把概括的结论具体化的过程中,推动对概念细节的认识;(3)通过变式、反思、系统化,建立概念的联系,形成概念体系;(4)强调类比、特殊化、推广等具有普适性的逻辑思考方法的应用。,以科学认识的形成与发展途径为参照设计概括过程,(1)创设问题情境,引起学生对新知识的注意与思考;(2)开展观察、试验、类比、猜想、归纳、概括、特殊化、一般化等活动,形成假设;(3)利用已有知识进行推理论证活动,检验假设,获得新知识,并纳入到已有认知结构中;(4)新知识的应用,加深理解(理在用中方知妙),建立相关知识的联系,巩固新知识。,例5不等式基本性质的猜想证明应用,(1)引导学生回忆规定实数大小方法(顺序公理,数形结合);(2)引导学生认识实数大小的基本事实的本质和作用(实数大小比较归结为统一的与0的大小比较或判断差的符号问题);(3)引导学生回忆等式基本性质的获得过程及其基本思想(考察运算中的不变性);(4)引导学生类比等式的基本性质提出一些不等式的基本性质的猜想;,(5)尝试用实数大小的基本事实证明性质;(6)辨析不等式的基本性质(与等式问题比较,考察异同;不同语言表述性质;等等);(7)尝试从基本性质出发,得出一些新的结论(如ab,cd,则acbd);(8)概括思想方法(与实数性质、等式性质的联系性;在数与运算的系统中考察关于实数大小的基本定理;等等)。,4有效调控原则使用“反馈调节”机制,有效监控教学,目的:将教学活动围绕在学生思维“最近发展区”内。需要学生自我监控的参与。反馈要注重差异,调节要采取分化性措施:(1)给不同的学生提供不同类别的专门帮助;(2)布置可选择的作业集合,以满足不同学生的不同需求;(3)认真考虑学生的个人爱好,机智地将其纳入课堂教学。,五、课堂教学结构的选择,1.课堂教学结构应当与教育对象、教学内容相适应;2.课堂教学结构应当以学生思维规律为依据;3.课堂教学结构设计以对知识、学习概念的正确认识为基础。,五环节课堂教学结构,(1)创设问题情境,明确学习目标;(2)指导学生开展尝试活动;(3)组织变式训练;(4)认知结构的组织和再组织;(5)根据教学目标,及时反馈调节。,六、课堂教学设计的基本环节,1背景分析。(1)学习任务分析。重点:本堂课的核心概念、数学思想方法;前后相关的知识;(2)学生情况分析。重点:学生已有认知结构与新内容之间的潜在距离。2教学目标的设计。重点:通过学习,学生能做哪些过去不能做的事。,3课堂结构的设计。重点:数学知识的逻辑顺序、教学活动顺序。4教学媒体的设计。重点:适应学习需要,有利于揭示数学本质。5教学过程的设计。重点:引导数学思维的“问题串”;变式训练;反思活动;过程性评价。,七、直线的参数方程的教学设计,教学任务分析适当选择原点和单位长度,使直线l成为数轴,则直线l上任一点就可由它在数轴上的坐标t惟一确定。因此可以选择坐标t为直线参数方程中的参数。从而,建立直线的参数方程就转化为建立(一维)坐标t与(二维)坐标x,y之间关系的问题。本节课的教学任务是联系数轴、向量等知识,求出直线的参数方程,并进行简单应用,让学生体会直线参数方程在解决问题中的作用。,教学情景设计(问题系列),(1)数轴是怎样建立的?数轴上点的坐标的几何意义是什么?(2)如果把平面直角坐标系中的一条直线作为数轴,那么直线上任意一点就有两种坐标。怎样选取单位长度和方向才有利于建立这两种坐标之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒水饮料理论知识考核试题题库及答案
- 2025年度市政道路用地地基购置合同
- 2025版申通快递快递运输合同标准化管理规范
- 2025年冬捕海参专项购销合同书
- 2025年交通运输行业交通工程人才需求与培养模式分析报告
- 2025版房地产开发预付款担保合同
- 2025年农业与食品行业农业废弃物资源化利用研究报告
- 2025年创新药研发靶点挖掘与验证技术前瞻报告
- 2025年生鲜新零售行业冷链物流配送中心设计与运营优化研究报告
- 2025年互联网教育平台建设资金申请与教育服务模式创新报告
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 枣庄学院《图学基础与计算机绘图》2024-2025学年第一学期期末试卷
- 2025版仓储库房租赁合同范本(含合同生效条件)
- GB 46031-2025可燃粉尘工艺系统防爆技术规范
- 2025至2030年中国纳米抛光浆料行业发展监测及发展趋势预测报告
- 养老护理员培训班课件
- 近十年中职试卷及答案
- 商业装修手册
- 医院信息互联互通化成熟度测评
- 股票k线图入门图解
评论
0/150
提交评论