




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3章图形与坐标,3.3轴对称和平移的坐标表示,第2课时平移的坐标表示,目标突破,总结反思,第3章图形与坐标,知识目标,3.3轴对称和平移的坐标表示,知识目标,1通过作图,掌握点的上、下、左、右平移中的坐标变化规律2综合上、下、左、右平移规律,归纳出斜向平移的规律,并能根据图形上点的坐标的变化来判定图形的移动变化过程,目标突破,目标一掌握点的上、下、左、右平移规律,3.3轴对称和平移的坐标表示,例1教材例2针对训练写出下列各点平移后的点的坐标:(1)将点A(3,2)向右平移3个单位;(2)将点B(1,2)向左平移3个单位;(3)将点C(4,7)向上平移2个单位;(4)将点D(1,2)向下平移1个单位;(5)将点E(2,3)先向右平移1个单位,再向下平移1个单位,3.3轴对称和平移的坐标表示,解析根据平移公式:右移横坐标加,左移横坐标减;上移纵坐标加,下移纵坐标减,即可得出平移后点的坐标.,解:(1)平移后点的坐标为(0,2).(2)平移后点的坐标为(2,2).(3)平移后点的坐标为(4,9).(4)平移后点的坐标为(1,1).(5)平移后点的坐标为(3,4).,3.3轴对称和平移的坐标表示,【归纳总结】点的上、下、左、右平移的特征点的上、下平移的特征:横坐标不变,纵坐标发生改变点的左、右平移的特征:纵坐标不变,横坐标发生改变,目标二能归纳出斜向平移规律并能解决问题,3.3轴对称和平移的坐标表示,例2教材例3针对训练如图332,在平面直角坐标系中,P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a6,b2),图332,3.3轴对称和平移的坐标表示,(1)请画出ABC经过上述平移后得到的A1B1C1,并写出点A,C,A1,C1的坐标;(2)求出以A,C,A1,C1为顶点的四边形的面积,图332,3.3轴对称和平移的坐标表示,解析(1)由点P与其对应点P1的坐标变化:横坐标加6,纵坐标加2,可知图形的平移方式是先向右平移6个单位,再向上平移2个单位;(2)以A,C,A1,C1为顶点的四边形的面积可分割为以AC1为底的两个三角形的面积.,3.3轴对称和平移的坐标表示,3.3轴对称和平移的坐标表示,【归纳总结】(1)解有关图形平移的题,先要掌握平移方式(即左右平移还是上下平移);(2)图形的平移是整体移动,由一个点的移动方式就可以确定整个图形的移动方式,例3点P(x,y)关于y轴的对称点是P1,将点P1向上平移3个单位,再向左平移5个单位后落到点P2的位置(1)写出点P1,P2的坐标(用x,y来表示);(2)如果点P2的横坐标和纵坐标分别与点P的纵坐标和横坐标相同,试求点P的坐标,3.3轴对称和平移的坐标表示,解析(1)根据平移的性质直接写出即可;(2)根据题意得到方程组,求出方程组的解即可.,3.3轴对称和平移的坐标表示,x5y,,y3x,,x1,,y4,,【归纳总结】解轴对称、平移的综合应用题,有时需要借助示意图辅助分析,才能找出各对应点之间的联系,3.3轴对称和平移的坐标表示,总结反思,知识点一左右平移公式,小结,3.3轴对称和平移的坐标表示,知识点二上下平移公式,3.3轴对称和平移的坐标表示,知识点三图形的斜向平移,(1)已知图形上的某点移动的方向与距离,如果该图形作斜向平移,那么这个图形上的其他点都跟这个点作类似地平移,其上、下、左、右平移的方向与距离都与已知点相同;(2)对于一个图形的斜向平移有两种方式,即先作左、右平移,再作上、下平移或者先作上、下平移,再作左、右平移,两种平移的结果是一样的,在计算时要注意正确处理点的横、纵坐标的加减运算,3.3轴对称和平移的坐标表示,3.3轴对称和平移的坐标表示,反思,3.3轴对称和平移的坐标表示,如图333,OAB的顶点B的坐标为(4,0),把OAB沿x轴向右平移得到CDE,CB1.小花说:“CB1,所以平移的距离为1,故平移后点B的对应点E的坐标为(5,0)”你认为小花的说法正确吗?,图333,3.3轴对称和平移的坐标表示,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私人安全施工协议书范本
- 心理健康课课件思维
- 做防水协议书范本
- 立春宣传课件图片
- 2025年磁盘用微晶玻璃基板项目合作计划书
- 2025年循环流化床锅炉合作协议书
- 2025年高收缩腈纶项目合作计划书
- 2025版酒店餐厅场地租赁及美食合作合同
- 二零二五年度贷款购买别墅买卖合同细则
- 二零二五版山林资源开发合作协议范本
- 辅导员基础知识试题及答案
- 办公家具评分表
- 搅拌器设计计算
- 剖宫产术的解剖
- 采掘电钳工题库全套及答案全案(高级)
- VDA6.3:2023 汽车核心工具自我评估测试题库真题 (含答案)
- 2022年泰顺县特殊教育岗位教师招聘考试笔试试题及答案解析
- GB/T 28955-2012道路车辆全流式机油滤清器滤芯尺寸
- GA/T 852.1-2009娱乐服务场所治安管理信息规范第1部分:娱乐服务场所分类代码
- 建设项目办理用地预审与选址意见书技术方案
- 10kV中压开关柜知识培训课件
评论
0/150
提交评论