武汉专版2019年秋九年级数学上册第二十四章圆专题33切线的证明课件 新人教版.ppt_第1页
武汉专版2019年秋九年级数学上册第二十四章圆专题33切线的证明课件 新人教版.ppt_第2页
武汉专版2019年秋九年级数学上册第二十四章圆专题33切线的证明课件 新人教版.ppt_第3页
武汉专版2019年秋九年级数学上册第二十四章圆专题33切线的证明课件 新人教版.ppt_第4页
武汉专版2019年秋九年级数学上册第二十四章圆专题33切线的证明课件 新人教版.ppt_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十四章圆,专题33切线的证明,武汉专版九年级上册,一、有“公共点”连半径,证垂直1如图,ABC内接于O,CAEB,求证:AE与O相切2如图,以ABC的BC边上一点O为圆心画圆,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若ABBF.求证:AB是O的切线.,【解析】作直径AD,连接CD,DDAC90.BD,而CAEB,CAEDAC90,即DAE90,OAAE.OA为半径,AE与O相切,【解析】连接OA,OD,点D为CE的下半圆弧的中点,ODBC,EOD90.ABBF,OAOD,BAFBFA,OADD.而BFAOFD,OADBAFDOFD90,即OAB90,OAAB.OA为半径,AB是O的切线.,3如图,P是O外一点,C是O上一点,割线POB与O相交于点A,B,连接PC,若PA2,PC4,PB8,求证:PC是O的切线4如图,O经过菱形ABCD的三个顶点A,C,D,且与AB相切于点A.求证:BC为O的切线.,【解析】连接OC,PA2,PB8,AB6,OCOAOB3,OP5,OP2OC2CP2,OCP90.OC为半径,PC是O的切线,【解析】连接OA,OB,OC,AB与O切于点A,OAAB,即OAB90.四边形ABCD为菱形,BABC,ABOCBO(SSS),BCOBAO90,OCBC.OC为半径,BC为O的切线,二、无“公共点”作垂直,证半径5如图,ABC是等边三角形,AOBC,垂足为O,O与AC相切于点D,BEAB交AC的延长线于点E,与O相交于G,F两点(1)求证:AB与O相切;(2)若等边三角形ABC的边长是4,求线段BF的长.,6如图,在四边形ABCD中,AABC90,CDBCAD.求证:以CD为直径的圆与AB相切.,【解析】设以CD为直径的圆为O.作ADC的平分线交AB于点E,过点E作EFCD于点F,连接CE,易证DFDA.CDBCADCFDF,CFCB,RtECBRtECF(HL),易得CED90,点E在O上,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论