




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节圆的方程,三年5考高考指数:1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程;2.初步了解用代数方法处理几何问题.,1.圆的方程的求法、圆的几何性质是高考的重点;2.常和圆的几何性质结合,重点考查待定系数法、方程的曲线与曲线的方程的概念;3.题型多以选择题和填空题为主,属中低档题目.,1.圆的定义、方程(1)在平面内到_的距离等于_的点的轨迹叫做圆;(2)确定一个圆的基本要素是:_和_.(3)圆的标准方程两个条件:圆心(a,b),_;标准方程:(x-a)2+(y-b)2=r2.,定点,定长,圆心,半径,半径r,(4)圆的一般方程一般方程:x2+y2+Dx+Ey+F=0;方程表示圆的充要条件为:_;圆心坐标,半径r=.,D2+E2-4F0,【即时应用】(1)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是_;(2)圆x2-2x+y2-3=0的圆心到直线x+y-3=0的距离为_;(3)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为_.,【解析】(1)x2+y2+ax+2ay+2a2+a-1=0表示圆,所以a2+(2a)2-4(2a2+a-1)0,解得-2a;(2)x2-2x+y2-3=0的圆心坐标为(1,0),它到直线x+y-3=0的距离为,(3)直线方程变为(x+1)a-x-y+1=0,由C(-1,2).所求圆的方程为(x+1)2+(y-2)2=5.即:x2+y2+2x-4y=0.答案:(1)-2a(2)1(3)x2+y2+2x-4y=0,2.点与圆的位置关系(1)理论依据:_与_的距离与半径的大小关系(2)三个结论:圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)_点在圆上;_点在圆外;_点在圆内.,点,圆心,(x0-a)2+(y0-b)2=r2,(x0-a)2+(y0-b)2r2,(x0-a)2+(y0-b)2r2,【即时应用】(1)请思考下列问题若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0上,则x02+y02+Dx0+Ey0+F满足什么条件?若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0内,则x02+y02+Dx0+Ey0+F满足什么条件?若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x02+y02+Dx0+Ey0+F满足什么条件?,提示:x02+y02+Dx0+Ey0+F=0;x02+y02+Dx0+Ey0+F0;x02+y02+Dx0+Ey0+F0.,(2)已知点A(0,0)在圆:x2+y2+2ax+a2+a-2=0外,则a的取值范围是_;【解析】因为方程x2+y2+2ax+a2+a-2=0表示圆,所以(2a)2-4(a2+a-2)0,解得:a2,又因为点A(0,0)在圆外,所以a2+a-20,解得:a-2或a1,综上可得1a2或a-2.答案:1a2或a-2,(3)已知点A(1,2)在圆:x2+y2+ax-2y+b=0上,且点A关于直线x-y=0的对称点B也在圆上,则a=_,b=_.【解析】方法一:点A(1,2)关于直线x-y=0的对称点为B(2,1),又因为A、B两点都在圆上,所以,解得方法二:易知圆心在y=x上,1=,即a=-2,又点A(1,2)在圆x2+y2-2x-2y+b=0上,12+22-21-22+b=0,b=1.答案:-21,求圆的方程【方法点睛】1.求圆的方程的方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程;,(2)待定系数法:若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a、b、r的方程组,从而求出a、b、r的值;若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.,2.确定圆心位置的方法(1)圆心在过切点且与切线垂直的直线上;(2)圆心在任意一弦的垂直平分线上;(3)两圆相切时,切点与两圆圆心共线.,【例1】(1)过点A(-2,4)、B(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程_;(2)求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.,【解题指南】(1)可设圆的方程的一般形式,利用A(-2,4)、B(3,-1)两点在圆上及该圆在x轴上截得的弦长等于6,得出三个方程,解方程组即可确定圆的方程;(2)可先设圆心坐标为C(a,b),由圆心与切点连线与切线垂直及圆心到圆上点的距离相等得出关于a、b的两个方程,解方程组即可得到圆心坐标,再求出半径,得出圆的方程;也可直接求出圆心坐标,再求出半径,得出圆的方程.,【规范解答】(1)设圆的方程为x2+y2+Dx+Ey+F=0,将A、B两点的坐标代入得,再令y=0,得x2+Dx+F=0,设x1、x2是方程的两根,由|x1-x2|=6得,D2-4F=36,由,解得或因此,所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0,(2)方法一:设圆心坐标为C(a,b),依题意得:解得:半径因此,所求圆的方程为:,方法二:依题意得,圆心在AB的垂直平分线上,而AB的垂直平分线方程为:x+y-4=0;又因为圆心也在过B且与直线l垂直的直线上,而此直线方程为:3x-y-18=0,解方程组得:,以下同方法一.,【互动探究】本例(2)中“经过点A(-2,-4)”改为“圆心在直线x+y-4=0上”,结果如何?【解析】方法一:设所求圆的方程为(x-a)2+(y-b)2=r2,依题设有解得因此,所求圆的方程为:,方法二:依题设可知,圆心也在过切点B(8,6)且与l垂直的直线上,其斜率为3,所以方程为y-6=3(x-8)即3x-y-18=0,又圆心在x+y-4=0上,由,得圆心(),半径因此,所求圆的方程为:,【反思感悟】1.从题组求解可以看出,确定一个圆的方程,需要三个独立的条件;“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答与圆有关的问题,应注意数形结合,充分运用圆的几何性质,简化运算.,【变式备选】已知圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,则这个圆的方程是_.【解析】因为圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,所以,直径的两个端点坐标为(4,0)、(0,-6),所以,圆的半径为,圆的方程为:(x-2)2+(y+3)2=13.答案:(x-2)2+(y+3)2=13,与圆有关的最值问题【方法点睛】与圆有关的最值问题,常见的有以下类型(1)形如型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;(2)形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;(3)形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点的距离平方的最值问题.,【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.【解题指南】充分利用所求代数式的几何意义,运用几何法求解.为点(x,y)与原点连线的斜率;而y-x表示动直线y=x+b的纵截距;x2+y2表示点(x,y)与原点的距离的平方;也可以消去一个元,转化为在函数定义域内求最值.,【规范解答】(1)原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆,的几何意义为点(x,y)与原点连线的斜率,所以设,即y=kx,当直线与圆相切时,斜率k取最大值或最小值,此时,解得k=.所以的最大值为、最小值为,(2)y-x可看作直线y=x+b在y轴上的截距,当直线与圆相切时,直线y=x+b在y轴上的截距取最大值或最小值,此时,解得.所以y-x的最大值为、最小值为,(3)方法一:x2+y2表示点(x,y)与原点的距离的平方,由平面几何知识可知,原点与圆心的连线所在直线与圆的两个交点处取得最大值或最小值.又圆心到原点的距离为2,故,方法二:由x2+y2-4x+1=0得:y2=-x2+4x-1,且-x2+4x-10,即:x2+y2=x2+(-x2+4x-1)=4x-1,【反思感悟】1.本题三问都是求代数式的最值,它们都是利用代数式的几何意义与取最值时所满足的条件得出等式,通过解方程即可得出结论.2.解答圆的最值问题,应注意数形结合,充分运用直线的斜率、在坐标轴上的截距、几何性质,来寻找解题思路.,【变式训练】已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值为_;最小值为_.【解析】的几何意义表示圆上的动点与(2,1)连线的斜率,所以设,即kx-y+1-2k=0,当直线与圆相切时,斜率k取最大值或最小值,此时,解得.所以的最大值为、最小值为.答案:,【变式备选】若点P(x,y)是圆(x+1)2+y2=1上任意一点,求(x-2)2+(y+4)2的最大值、最小值.【解析】方法一:(x-2)2+(y+4)2表示圆上的点到定点(2,-4)的距离的平方,因为圆心(-1,0)到点(2,-4)的距离为,所以,圆上的点到点(2,-4)的距离的最大值为6、最小值为4;因此,(x-2)2+(y+4)2的最大值为36、最小值为16.,方法二:因为点P(x,y)是圆(x+1)2+y2=1上任意一点,所以可设,则(x-2)2+(y+4)2=(cos-3)2+(sin+4)2=26+8sin-6cos=26+10sin(+)(其中tan=).故(x-2)2+(y+4)2的最大值为36;(x-2)2+(y+4)2的最小值为16.,与圆有关的轨迹问题【方法点睛】1.求轨迹方程的基本步骤第一步:建立适当的平面直角坐标系,设曲线上任意点的坐标为M(x,y);第二步:写出适合已知条件的点M的集合P=M|P(M);第三步:用坐标表示P(M),列出方程f(x,y)=0;第四步:化简方程f(x,y)=0为最简形式.,2.求与圆有关的轨迹方程的方法,【提醒】注意轨迹与轨迹方程的区别.,【例3】长为2a的线段AB的两端点A、B分别在x轴和y轴上滑动,求线段AB中点的轨迹方程.【解题指南】可设AB的中点坐标为(x,y),再求出A、B的坐标,由距离公式及线段AB的长即可得出方程;还可由AB的中点与坐标原点的距离为定长,得出轨迹为圆,从而得出方程.,【规范解答】方法一:设AB的中点坐标为(x,y),因为线段AB的两端点A、B分别在x轴和y轴上滑动,所以A、B两点的坐标分别为A(2x,0)、B(0,2y),因为线段AB长为2a,所以,化简得:x2+y2=a2.方法二:设AB的中点坐标为(x,y),依题设知,AB的中点到原点的距离为a,所以其轨迹为以原点为圆心,以a为半径的圆,其方程为x2+y2=a2.,【反思感悟】1.求点的轨迹时,关键是发现点满足的几何条件,寻找等式,得出方程;另外,注意圆的定义的应用,如果轨迹是圆,则可由圆心及半径直接写出圆的方程.2.解答轨迹问题时,要注意验证应该删除的点或遗漏的点,以防增解或漏解.,【变式训练】已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,求这些弦的中点P的轨迹方程.【解析】方法一:直接法设P(x,y),由题意知圆心C(,).P点是过点A的弦的中点,又(2-x,3-y),=(1-x,1-y),(2-x)(1-x)+(3-y)(1-y)=0,P点的轨迹方程为,方法二:定义法由已知知,PAPC,由圆的性质知点P在以AC为直径的圆上,又圆心C(1,1),而AC中点为(,2),,所以半径为所求动点P的轨迹方程为,【满分指导】与圆的方程有关的解答题的规范解答【典例】(13分)(2011新课标全国卷)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OAOB,求a的值.,【解题指南】(1)可先求出曲线与坐标轴的交点坐标,再求圆的方程;(2)直线与圆的方程联立,由即可求出a的值.【规范解答】(1)曲线y=x2-6x+1与坐标轴的交点为(0,1),(,0).2分故可设圆的圆心坐标为(3,t),则有32+(t-1)2=()2+t2,解得:t=1.5分则圆的半径为所以圆的方程为:(x-3)2+(y-1)2=9.7分,(2)设A(x1,y1),B(x2,y2),其坐标满足方程组消去y得到方程:2x2+(2a-8)x+a2-2a+1=0,由已知可得判别式=(2a-8)2-42(a2-2a+1)=56-16a-4a20,由根与系数的关系可得:x1+x2=4-a,10分,由OAOB可得:x1x2+y1y2=0.又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0由可得a=-1,满足0,故a=-1.13分,【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:,1.(2011安徽高考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为()(A)-1(B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毛毯上的猫咪课件
- 交通基础设施建设投融资模式创新2025年市场趋势预测报告
- 《施工组织设计专项施工方案资料》司10KV变电站安装施工组织设计方案
- 欧美名人事迹课件
- 三基提升竞赛复习试题有答案
- 2025年基层医疗机构信息化建设现状与发展趋势分析报告
- 个人贷款管理办法催收
- 网络文明传播管理办法
- 线上教学常规管理办法
- 社保稽查现场管理办法
- 佳酿贺喜升学宴金榜题名踏新程热烈庆祝某同学金榜题名模板
- 医学美容技术专业《美容医学咨询与沟通》课程标准
- 营养指导员理论知识考试题库及答案
- 2024生产安全事故隐患排查治理规定(修订征求意见稿)
- 2024年贵州贵安新区产业发展控股集团有限公司招聘笔试参考题库含答案解析
- JB-T 14509-2023 反渗透海水淡化设备技术规范
- (高清版)TDT 1055-2019 第三次全国国土调查技术规程
- 2024年儿童保健考试复习题库(含答案)
- 砖厂机械伤害安全培训课件
- 02J401 钢梯【含03年修改】图集
- 罚款减免申请书范文(19篇)
评论
0/150
提交评论