小学奥数工程问题汇总.doc_第1页
小学奥数工程问题汇总.doc_第2页
小学奥数工程问题汇总.doc_第3页
小学奥数工程问题汇总.doc_第4页
小学奥数工程问题汇总.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

工程问题讲解一:例:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?法一:一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,所需时间=工作量工作效率=6(天)?两人合作需要6天.这是工程问题中最基本的问题。法二:为了计算整数化(尽可能用整数进行计算),把工作量多设份额.此题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30(3+ 2)= 6(天)数计算,就方便些.法三:2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是1510=32.当知道了两者工作效率之比,从比例角度考虑问题,也需时间是因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.一、两个人的问题:标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 3) 3= 4(天).解三:甲与乙的工作效率之比是6 9= 2 3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做 24天,乙做 24天,现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是75天和50天.例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天).答:乙还需要做 56天.例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).答:从开始到完工共用了11天.解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 8- 1 2)(3+1)= 1(天).解三:甲队做1天相当于乙队做3天.在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做23=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中3天可由甲队1天完成,因此两队只需再合作1天.例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.两队休息期间未做的工作量是(3+2)16- 60= 20(份).因此乙休息天数是(20- 3 3) 2= 5.5(天).解三:甲队做2天,相当于乙队做3天.甲队休息3天,相当于乙队休息4.5天.如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.8天,李就能完成甲工作.此时张还余下乙工作(60-48)份.由张、李合作需要(60-48)(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天.(最优化)例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.两人合作,共完成3 0.8 + 2 0.9= 4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-38)(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时如果这件工作始终由甲一人单独来做,需要多少小时?解:乙6小时单独工作完成的工作量是乙每小时完成的工作量是两人合作6小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的时间是答:甲单独完成这件工作需要33小时.二、多人的工程问题例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要90天完成.例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解:甲做1天,乙就做3天,丙就做32=6(天).说明甲做了2天,乙做了23=6(天),丙做26=12(天),三人一共做了2+6+12=20(天).答:完成这项工作用了20天.本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的42=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.他们共同做13天的工作量,由甲单独完成,甲需要答:甲独做需要26天.事实上,当我们算出甲、乙、丙三人工作效率之比是321,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.(OK)例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?解一:设这项工作的工作量是1.甲组每人每天能完成乙组每人每天能完成甲组2人和乙组7人每天能完成答:合作3天能完成这项工作.解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.现在已不需顾及人数,问题转化为:甲组独做12天,乙组独做4天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200个零件.解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成82=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是1614=87.已知甲、乙工作效率之比是 32= 128.综合一起,甲、乙、丙三人工作效率之比是1287.当三个车间一起做时,丙制作的零件个数是2400(12- 8) 7= 4200(个).(差倍)例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.三人共同搬完,需要60 2 (6+ 5+ 4)= 8(小时).甲需丙帮助搬运(60- 6 8) 4= 3(小时).乙需丙帮助搬运(60- 5 8)4= 5(小时).三、水管问题例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?甲每分钟注入水量是乙每分钟注入水量是因此水池容积是答:水池容积是27立方米.例16 有一些水管,它们每分钟注水量都相等.现在按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?答:开始时打开6根水管.例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要乙、的顺序轮流打开1小时,问多少时间后水开始溢出水池?,否则开甲管的过程中水池里的水就会溢出.(此处取5因为灌的比排的量大)以后(20小时),池中的水已有此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.因此,答案是28小时,而不是30小时.例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?解:先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4 60= 240(立方米).时间都用分钟作单位,1个水龙头每分钟放水量是240 ( 5 150- 8 90)= 8(立方米),8个水龙头1个半小时放出的水量是8 8 90,其中 90分钟内流入水量是 4 90,因此原来水池中存有水 8 8 90-4 90= 5400(立方米).打开13个水龙头每分钟可以放出水813,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要5400 (8 13- 4)=54(分钟).答:打开13个龙头,放空水池要54分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.(牛吃草)例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?解:设满水池的水量为1.A管每小时排出A管4小时排出因此,B,C两管齐开,每小时排水量是B,C两管齐开,排光满水池的水,所需时间是答: B, C两管齐开要 4 小时 48分才将满池水排完.本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.17世纪英国伟大的科学家牛顿写过一本普遍算术一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.讲解二:例1、甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。答:甲再出发后15分钟两人相遇。 例2、单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的乙需要10+5=15(天)。甲、乙合作需要例3、放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一例4、 某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是例5甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流件工作,要用多少天才能完成?分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。由最后一轮完成的工作量相同,得到竞赛一: 1甲、乙两人共同加工一批零件,8小时司以完成任务如果甲单独加工,便需要12小时完成现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务问乙一共加工零件多少个?【分析与解】乙单独加工,每小时加工=. 甲调出后,剩下工作乙需做(82)()=(小时),所以乙每小时加工零件420=25个,则2小时加工225=60(个),因此乙一共加工零件60+420480(个) 2某工程先由甲单独做63天,再由乙单独做28天即可完成如果由甲、乙两人合作,需48天完成现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天?【分析与解】 由右表知,甲单独工作15天相当于乙单独工作20天,也就是甲单独工作3天相当于乙单独工作4天 所以,甲单独工作63天,相当于乙单独工作6334=84天,即乙单独工作84+28=112天即可完成这项工程现在甲先单独做42天,相当于乙单独工作4234=56天,即乙还需单独工作11256=56天即可完成这项工程 3有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天现在让3个队合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完当甲队撤出后,乙、丙两队又共同合修了多少天才完成?【分析与解】 甲、乙、丙三个队合修的工作效率为+=,那么它们6天完成的工程量为6=,而实际上因为中途撤出甲队6天完成了的工程量为1 所以1=是因为甲队的中途撤出造成的,甲队需=5(天)才能完成的工程量,所以甲队在6天内撤出了5天 所以,当甲队撤出后,乙、丙两队又共同合修了5天才完成 4一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰好完成一半现在甲、乙两队合做若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用了多少天?【分析与解】 甲队做6天完成一半,甲队做3天乙队做2天也完成一半。所以甲队做3天相当于乙队做2天 即甲的工作效率是乙的,从而乙单独做12=8(天)完成,所以两段所用时间相等,每段时间应是: 8(1+l+)3(天),因此共用326(天) 5抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【分析与解】已知甲、乙、丙合抄一天完成书稿的,又已知甲每天抄写量等于乙、丙两人每天抄写量之和,因此甲两天抄写书稿的,即甲每天抄写书稿的; 由于丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的,即丙每天抄写书稿的;于是可知乙每天抄写书稿的. 所以乙一人单独抄写需要1=24天才能完成 6游泳池有甲、乙、丙三个注水管如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池那么,单开丙管需要多少小时注满水池?【分析与解】 乙管每小时注满水池的-=, 丙管每小时注满水池的-=. 因此,单开丙管需要1=10(小时) 7一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成那么甲、丁两人合作多少天可以完成?【分析与解】 甲、乙,乙、丙,丙、丁合作的工作效率依次是、. 对于工作效率有(甲,乙)+(丙,丁)(乙,丙)=(甲,丁)即+=,所以甲、丁合作的工作效率为所以,甲、丁两人合作24天可以完成这件工程8一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成那么丙一个人来做,完成这项工作需要多少天? 【分析与解】 方法一:对于工作效率有: (甲,乙)+(乙,丙)(丙,甲)=2乙,即+=为两倍乙的工作效率,所以乙的工作效率为 而对于工作效率有,(乙,丙)乙=丙,那么丙的工作效率为 那么丙一个人来做,完成这项工作需1=48天 方法二:2(甲,乙,丙)=(甲+乙)+(乙、丙)+(甲、丙),所以(甲,乙,丙)=2,即甲、乙、丙3人合作的工作效率为 那么丙单独工作的工作效率为,那么丙一个人来做,完成这项工作需48天 9某工程如果由第1、2、3小队合干需要12天才能完成;如果由第1、3、5小队合干需要7天才能完成;如果由第2、4、5小队合干需要8天才能完成;如果由第1、3、4小队合干需要42天才能完成那么这5个小队一起合干需要多少天才能完成这项工程? 【分析与解】 由已知条件可得,对于工作效率有: (1、2、3)+(1、3、5)+2(2、4、5)+(1、3、4)=3(1、2、3、4、5)所以5个小队一起合作时的工作效率为: (2)3所以5个小队合作需要6天完成这项工程.评注:这类需综合和差倍等知识的问题在工程问题中还是很常见的. 10一个水箱,用甲、乙、丙三个水管往里注水若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满又知,乙管每分钟注水量是甲管每分钟注水量的2倍则该水箱最多可容纳多少吨水? 【分析与解】 设甲管注入18吨水所需的时间为“1”,而乙管每分钟注水量是甲管每分钟注水量的2倍,那么乙管注入18吨的水所需时间为“O.5”,所以乙管注入27吨水所需的时间为27180.5=0.75. 以下采用两种方法: 方法一:设丙在单位时间内注入的水为“1”,那么有:因此18+“1”=27+“O.75”,则“0.25”=9吨,所以“1”=36吨,即丙在单位时间内灌入36吨的水 所以水箱最多可容纳18+36=54吨的水 方法二:也就是说甲、丙合用的工作效率是乙、丙合用工作效率的 再设甲单独灌水的工作效率为“1”,那么乙单独灌水的工作效率为“2”,有1+丙=(2+丙);所以丙的工作效率为“2”,即丙的工作效率等于乙的工作效率,那么在乙、丙合灌时,丙也灌了27吨,那么水箱最多可容纳27+27=54吨水 11.某水池的容积是100立方米,它有甲、乙两个进水管和一个排水管甲、乙两管单独灌满水池分别需要10小时和15小时水池中原有一些水,如果甲、乙两管同时进水而排水管放水,需要6小时将水池中的水放完;如果甲管进水而排水管放水,需要2小时将水池中的水放完问水池中原有水多少立方米? 【分析与解】 甲每小时注水10010=10(立方米), 乙每小时注水10015=(立方米), 设排水管每小时排水量为“排”,则(“排”10)3=(“排”10),整理得3“排”3=“排”10,2“排”=40,则“排”=20 所以水池中原有水(2010)2=20(立方米) 12一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池现在需要在2小时内将水池注满,那么最少要打开多少个进水管? 【分析与解】 记水池的容积为“1”,设每个进水管的工作效率为“进”,排水管的工作效率为“排”,那么有: 4“进”“排”=, 2“进”“排”=. 所以有,2“进”=()=,那么“进”=,则“排”=.题中需同时打开x个进水管2小时才能注满,有:x“进”“排”=,即x=,解得x=8.5 所以至少需打开9个进水管,才能在2小时内将水池注满 13蓄水池有甲、丙两条进水管和乙、丁两条排水管要灌满一池水,单开甲管需要3小时,单开丙管需要5小时要排光一池水,单开乙管需要4小时,单开丁管需要6小时现在池内有池水如果按甲、乙、丙、丁的顺序循环开各水管,每次每管开1小时,问经过多少时间后水开始溢出水池? 【分析与解】 方法一:甲、乙、丙、丁四个水管,按顺序各开l小时,共开4小时,池内灌进的水是全池的=. 最优情况为:在完整周期后的1小时内灌满一池水因为此时为甲管进水时间,且甲的效率是四条管子中最大的 那么在最优情况下:完整周期只需注入1池水 所需周期数为4 那么,至少需要5个完整周期,而5个完整周期后,水池内有水5= 剩下l池水未灌满,而完整周期后l小时内为甲注水时间,有 (小时). 所以,需5个完整周期即20小时,再加上小时,即20小时后水开始溢出方法二:甲、乙、丙、丁四个水管,按顺序各开1小时,共开4小时,池内灌进的水是全池的= .加上池内原有的水,池内有水:=. 再过四个4小时,也就是20小时后,池内有水:4=,在20小时后,只需要再灌水1,水就开始溢出 = (小时),即再开甲管小时,水开始溢出,所以20+=20(小时)后,水开始溢出水池 方法三:甲、乙、丙、丁四个水管,按顺序各开1小时,共开4小时,池内灌进的水是全池的.一个周期后,池内有水:=,有待注入; 二个周期后,池内有水:=,即有先待注入; 三个周期后,池内有水:,有待注入; 四个周期后,池内有水:,即有待注入; 五个周期后,池内有水:,即有待注入 而此时,只需注入的水即可,小于甲管1小时注入的水量,所以有= (小时),即再开甲管小时,水开始溢出,所以20+20 (小时)后,水开始溢出水池 评注:这道题中要求的是第一次溢出,因为在一个周期内不是均匀增加或减少,而是有时增加有时又减少,所以不能简单的运用周期性来求解,这样往往会导致错误的解答,至于为什么?我们给出一个简单的问题,大家在解完这道题就会知晓 有一口井,深20米,井底有一只蜗牛,蜗牛白天爬6米,晚上掉4米,问蜗牛爬出井需多少时间?14.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空如果打开A,B两管,4小时可将水池排空,那么打开B,C两管,将水池排空需要多少时间? 【分析与解】 设这个水池的容量是“1” A管每小时排水量是:+每小时渗入水量; B管每小时排水量是: +每小时渗入水量; C管每小时排水量是: +每小时渗入水量; A、B两管每小时排水量是:+每小时渗入水量因为+每小时渗入水量+每小时渗入水量=+每小时渗入水量,因 此,每小时渗入水量是:().那么有A、B、C管每小时的排水量如下表所示:于是打开B、C两管,将水池排空需要 1(-)=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论