已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲整数与整除,主讲:罗老师,赛点解读,整数的研究在数学中占有极为重要的地位,由于解决有关证书的问题常需要灵活的方法和独特的技巧,同时综合运用了代数式的变形与分解,解方程和不等式等知识,故在初中数学竞赛中涉及到整数的题目非常多,非常广,整数问题有利于培养学生的综合素质,也便于考察学生的综合能力。,本讲涉及到的热门赛点有:,1、整数的十进制表示法;2、奇偶性分析;3、质数与合数;4、最大公约数与最小公倍数;5、数的整除特征;6、整除性质的运用;7、同余知识初步。,赛点1:整除的十进制的表示法,一般地:十进制的n+1位的自然数N可表示为:,其中,都是整数,且,例1小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是多少?(2006年全国初中数学竞赛试题),点拨:设原来电话号码的六位数为,,则有,故整体设出,是解题的关键。,完全解答:设原来的六为数为则经过两次升位后电话号码的八位数为根据题意,有,记,于是,解得:,因为,所以,故,因为为整数,所以,于是,所以,小明家原来的电话号码为282500,赛点2:奇偶分析,奇数与偶数有以下基本性质:(1)奇数偶数(2)两个整数相加(减)或相乘,结果的奇偶性如下表所示,奇偶,偶奇,奇偶,奇,偶,奇偶,奇偶,偶偶,奇,偶,(3)连续两个整数中一定一奇一偶;(4)若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数;(5)设m、n是整数,则的奇偶,性相同;(6)若干整数之积为奇数,则必每个数为奇数;若干整数之积为偶数,则其中至少有一个偶数。,例2若为互不相等的正奇数,满足则的末位数字是(),A、1B、3C、5D、7,(2005年全国初中数学联赛),点拨:由题意可知,,为偶数,又由分解为5个,不相等的偶数的积,确定出它们的值,进而获解。,解答:因为为互不相同的正奇数,所以,为互不相等的偶数,而将分解为5个互不相等的偶数之积,只有唯一的形式:,,所以,分别等于2、(-2)、4、6、(-6),所以,展开得:,,选A,例3黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减去1,这样继续下去,最后得到2005、2007、2009,问原来的三个数能否是2、2、2?,点拨本例解答的诀窍在于考察数字变化后的奇偶性(都是奇数),应用奇偶性解决问题。,解答:答案是否定的。我们利用奇偶性来说明这一点,我们按照问题中说的方式首先把2、2、2变为2、2、3,其中两个偶数,一个奇数,以后无论改变多少次,总是两个偶数,,一个奇数(数值可以改变,但奇数性不变),但2005、2007、2009是三个奇数,所以按照所述方式2、2、2永远不会变为2005、2007、2009,赛点3:质数与合数,质数与合数有以下性质:(1)不是质数,也不是合数,2是唯一的偶质数(2)质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4;(3)若质数,则有或。,例4已知均为质数,且满足,则以为边长的三角形是(),A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形,(2004年全国初中数学联赛题),点拨利用质数与合数,奇数与偶数的性质,先求出的值。,解答:由于均为质数,且满足则中有个是偶数,因此,故,所以此三角形是直角三角形,选B。,例5已知a、b、c都是大于3的质数,,(1)求证:存在正整数n1,使所有满足题设的三个质数a、b、c的和a+b+c都能被n整除;(2)求上一问中的最大值。,(2005年(宇振杯)上海市初中数学竞赛),点拨(1)由a+b+c=3(a+2b)可取n=3;(2)根据a、b被3除的余数只能是1或2讨论求解。,解答:(1)因为c=2a+5b,所以a+b+c=3a+6b=3(a+2b).又a、b、c都是大于3的质数,所以3|(a+b+c),即存在正整数n1(例如n=3),使n|(a+b+c).,(2)因为a、b、c都是大于3的质数,所以a、b、,C都不是3的倍数。若则c=2a+5b,这与c是质数矛盾。,同理,也将导致矛盾。,故只能是从而,,当a=7,b=13时,为质数,,当a=7,b=19时,,为质数,故在所有的n中,最大的为9,赛点4:最大公约数与最小公倍数,两个正整数a、b的最小公倍数记为,最大公约数记为,并且有,例6已知两个正整数之和为104055,它们的最大公约数是6937,求这两个数。,解答设这两个数为依题意得,由令且代入得,由于所以只有以下4种可能:,分别代入的表达式,得,例7在高速公路上,从3km处开始,每隔4km经过一个限速标志牌;并且从10km处开始,每隔9km经过一个速度监控仪。刚好在19km处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是(),(2006年全国初中数学竞赛试题),点拨同时经过这两种设施的时间是分别经过这两种设施所需时间的最小公倍数。,解答:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55km处。,故选C。,赛点5:数的整除特征数的整除特征:末位数字是偶数的整数被2整除;末位数字是0或5的整数被5整除;最末两位数能被8(或125)整除的整数,能被8或125)整除;各位数字之和能被3(或9)整除的整数,能被3(或9)整除;一个自然数,若从其末位起奇数位数字之和与,偶数位数字之和的差被11整除,则它能被11整除。,例8能被99整除且各位数字均不相同的最大自然数是_。,点拨被99整除即是既能被9整除又能被11整除,再由以知条件确定位数,找出最大值。,解答:易知所求数各位数字之和是9的倍数。,可考虑此数是十位数且用完10个数字,按整数被11整除,可知此数的右起奇数位数字和P与偶数位数字和Q的差是11的倍数,因为是奇数,所以也是奇数,,或或或33,又因为0+1+2+3+4=10,,所以因Q=28。易见符合前者的最大数是9857261403,符合后者的最大数是9876524130,两者中又以9876524130最大。,赛点6:整除性质的运用,根据整除的定义,不难得出以下性质:(1)若b|a,c|b,则c|a;(2)若c|a,c|b,则c|(a+b);(3)若c|a,c不能整除b,则c不能整除(a+b);(4)若b|a,则b|ac;(5)若b|a,c0,则bc|ac,若bc|ac,则b|a;(6)若b|a,c|d,则bc|ad;(7)若a=b+c,且m|a,m|b,则m|c;,(8)若b|a,c|a,则b,c|a;若b|a,c|a,且(b,c)=1,则bc|a;(9)若c|ab,且(a,c)=1,则c|b;(10)几个连续自然数之积必能被,整除。,例9x和y均为整数,若5|x+9y,求证:5|8x+7y.,点拨只需将8x+7y设法凑成x+9y的倍数式与5的倍数式的代数和即可获证。,解答:5|x+9y,5|2(x+9y)而5|5(2x+5y),知5(2x+5y)-2(x+9y)=8x+7y,5|8x+7y.,例10已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开题报告教师评语7
- 会计毕业论文参考选题1
- 我国B2C电子商务的物流配送模式研究-以京东商城为例
- 全生命周期成本管理的理论与案例
- 加强物资采购管理的对策和措施
- 梦旅人-浅析费里尼电影中的-魔法-
- 数学教育硕士论文题目
- 英语语言文学专业研究生培养方案(博士)
- 电子病历系统-毕业论文
- 理论研究对社会科学方法的应用与创新的推动作用分析
- 2025年少先队辅导员技能大赛考试题库(含答案)
- 辅警2025面试题目和答案
- 如何开好班前班后会培训
- 韩国留学生HSK六级考试书信写作错误分析
- 《大数据金融》高等院校经济类专业全套教学课件
- 2025年江苏省南京市鼓楼区中考一模英语试题及答案
- 2025年中国螺杆真空泵行业市场前景预测及投资价值评估分析报告
- 船舶运营中的风险识别与预防措施
- (高清版)DG∕TJ 08-2289-2019 全方位高压喷射注浆技术标准
- 转学代办协议书模板
- 大副航海英语试题及答案
评论
0/150
提交评论