小升初数学图形专题(2).doc_第1页
小升初数学图形专题(2).doc_第2页
小升初数学图形专题(2).doc_第3页
小升初数学图形专题(2).doc_第4页
小升初数学图形专题(2).doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二部分 空间与图形量一 长度 (一) 什么是长度: 长度是一维空间的度量。 (二) 长度常用单位 * 千米(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) (三) 单位之间的换算 1米10 分米 1分米 10 厘米 1厘米 10 毫米1米 100厘米 1千米 1000 米 二 面积 (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 * 平方千米 *公顷 *平方米 * 平方分米 * 平方厘米 (三)面积单位的换算 * 1平方分米=100平方厘米 * 1平方米 100 平方分米 * 1公顷 10000 平方米 * 1平方千米100 公顷 三 体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 体积单位: * 立方米 * 立方分米 * 立方厘米 容积单位: * 升 * 毫升 (三)单位换算 体积单位:* 1立方米=1000立方分米 * 1立方分米=1000立方厘米 * 1立方米=1000000立方厘米容积单位:* 1升=1000毫升 * 1升=1立方分米 * 1毫升=1立方厘米 四 质量 (一)什么是质量:质量,就是表示表示物体有多重。 (二)常用单位 * 吨 t * 千克 kg * 克 g (三)常用换算 * 1吨=1000千克 * 1千克=1000克 * 1吨=1000000克五 时间 (一)什么是时间:是指有起点和终点的一段时间 (二)常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒 (三)单位换算 * 1世纪=100年 * 1年=365天 (平年) * 1年=366天 (闰年) *1年=4个季度 *1个季度=3个月* 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天 * 1天= 24小时 * 1小时=60分 * 1分=60秒 六 货币 (一)什么是货币 货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。 (二)常用单位 * 元 * 角 * 分 (三)单位换算 * 1元=10角 * 1角=10分 * 1元=100分平面图形【认识、周长、面积】1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。2、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是()。3、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。5、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角形和任意三角形。7、三角形的内角和等于180度。多边形的内角和=180(n-2)。8、在一个三角形中,任意两边之和大于第三边。9、在一个三角形中,最多只有一个直角或最多只有一个钝角。10、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。11、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。12、圆环:两个半径不等的圆,当圆心重合时,两圆之间的部分叫圆环。下图一中阴影部分就是一个圆环,我们通常把较大的圆叫外圆,半径用R表示;较小的圆叫内圆,半径用r表示。 13、扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。上图二中阴影部分就是一个扇形。圆上A、B两点之间的部分叫弧,读作“弧AB”;像角AOB这样,顶点在圆心的角叫圆心角。14、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。15、围成一个图形的所有边长的总和就是这个图形的周长。16、物体的表面或围成的平面图形的大小,叫做它们的面积。常用值2=6.2812=37.683=9.4215=47.14=12.5616=50.245=15.7018=56.526=18.8420=62.87=21.9825= 78.58=25.1232=100.489=28.262.25=7.06510=31.46.25=19.625专题讲解及训练(一)平面图形平面图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长边长4 C=4a 周长4边长面积=边长边长 S=aa 2、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)2 C=2(a+b) 周长2-长宽 周长2-宽长面积=长宽 面积长宽 面积宽长 S=ab 3、 三角形 (s:面积 a:底 h:高) 面积=底高2 s=ah2 三角形高=面积2底 三角形底=面积 2高 4、平行四边形 (s:面积 a:底 h:高) 面积=底高 s=ah 面积底=高 面积高=底5、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)高2 s=(a+b) h22高 面积2高-下底=上底 面积2高-上底=下底6、圆形 (S:面积 C:周长 d=直径 r=半径) (1)周长=直径=2半径 C=d=2r (2)面积=半径半径长方体 正方体 特征面6 个面,6个面都是长方形,有时有两个相对的面是正方形。相对的两个面面积相等6 个面,6个面都是完全相同的正方形,6个面的面积都相等.棱12条棱相对的棱长度相等12条棱12条棱的长度都相等顶点8个顶点8个顶点表面积意义长方体或正方体6个面的面积之和,叫做它们的表面积计算公式(长宽长高宽高) 2棱长棱长6S=(ab+ah+bh) 2S=6a单位平方厘米 平方分米 平方米 相邻单位之间进率是100棱长和意义4条长,4条宽,4条高之和。12条棱长之和计算公式(长宽高)4棱长12C=(abh)4C=a12 a单位米、 分米、 厘米 相邻单位之间进率是10体积意义物体所占空间的大小叫做物体的体积计算公式长宽高棱长棱长棱长V=abh V=shV =a V=sh单位立方厘米(升毫) 立方分米(升) 立方米 相邻单位之间进率是1000容积意义容器所能容纳物体的体积,通常叫做它们的容积计算公式长宽高棱长棱长棱长V=abh V=shV =a V=sh单位升 (立方分米) 毫升(立方厘米) 相邻单位之间进率是1000立体图形 长方体、正方体主要内容圆柱和圆锥的认识、圆柱的表面积、圆柱圆锥的体积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面,叫做圆柱的侧面。圆柱两个底面之间的距离叫做圆柱的高。2、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。4、圆柱的侧面积 = 底面周长 高5、圆柱的表面积 = 侧面积 + 底面积 2 6、圆柱的体积=底面积 高典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。圆柱和圆锥的特征见下表。 S表=2rh+2r V锥= rhShV柱=rh圆 柱圆 锥底 面两个底面完全相同,都是圆形。一个底面,是圆形。侧 面曲面,沿高剪开,展开后是长方形。曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。高两个底面之间的距离,有无数条。顶点到底面圆心的距离,只有一条。 例2、求下面立体图形的底面周长和底面积。 半径3厘米 直径10米 例3、判断:圆柱和圆锥都有无数条高。分析与解:圆柱有无数条高,圆锥只有一条高。正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。两个底面之间有无数个对应的点,圆柱有无数条高。从圆锥的顶点到底面圆心的距离是圆锥的高。顶点和底面圆心都是唯一的点,所以圆锥只有一条高。 例4、(圆柱的侧面积)一个圆柱,底面直径是5厘米,高是12厘米。求它的侧面积。 分析与解: 高 底面周长点评:圆柱的侧面是个曲面,不能直接求出它的面积。推导出侧面积的计算公式也用到了转化的思想。把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。 例5、(圆柱的表面积)做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多一些。因此这儿保留整数,十分位上虽然是4,但也要向个位进1。 例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。 做这样一个水桶,至少需用铁皮6123平方厘米。分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积。 例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。这个圆柱的表面积是多少平方厘米? 分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。 例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?这个游泳池可以装水多少立方米?分析与解:要求水泥的质量,先要求水泥的面积。在圆柱形的游泳池的四周和底部涂水泥,涂水泥的面积是一个底面积加上侧面积。装水多少是求游泳池的体积。解答: 侧面积:底面积:涂水泥的面积:水泥的质量: 体积: 例9、把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是( )立方厘米。 例10、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米? 点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个面。但切的方式不同,增加的面也不同。如果是沿着底面直径把圆柱切成相同的两个部分,增加的面就是以底面直径和高为两邻边的长方形。 专题讲解及训练(二)主要内容比例尺、确定位置考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。2、比例尺 = ,比例尺有两种形式:数值比例尺和线段比例尺。3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一()后,放大(或缩小)后与放大(或缩小)前图形的面积比是n:1(或1:n)。4、知道了物体的方向和距离,就能确定物体的位置。5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。你能分别写出菜地长、宽的图上距离和实际距离的比吗?点评:求一幅地图的比例尺是一种比较简单的题目。做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。例2、(对比例尺的理解及比例尺的两种表示方法)比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少?点评:比例尺通常情况下都应该写成前项是1的比。但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。例4、(根据比例尺求图上距离或实际距离)在比例尺是的地图上,量得甲、乙两地的距离是2.5厘米。两地的实际距离是多少米?例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)下面的大长方形是由一个小长方形按比例放大后得到的图形。说说大长方形与小长方形面积的比是几比几。 图形与位置:1、 当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。 2、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。 3、用数对来确定位置,主要用来确定平面图上物体的位置。例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?N商场 北 4560 书店 0 3 6 9千米 汽车 例7、(知道了物体的方向和距离,才能确定物体的具体位置)量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60方向的多少千米处?商场呢?点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。算实际距离就根据前面比例尺的相关知识去求。例8辨析)书店在汽车的北偏东60方向,表示汽车也在书店的北偏东60方向。 例9、(根据给定的方向和距离,有序地确定物体的具体位置)海面上有一座灯塔,灯塔北偏西30方向30千米处是凤凰岛N北 W西 东E灯塔 0 10 20 30千米南S你能在图上指出凤凰岛大约在什么位置吗?点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。例10、(用方向和距离描述简单的行走路线)下图是某市旅游1号车行驶的线路图,请根据线路图填空。 (1)旅游1号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。(2)由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( )( )的方向行( )千米到达人民公园。点评:在进行描述的时候,一定要先说清楚方向再说路程。说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。例11、(用数对确定位置)1、在右图中,如果图书馆的位置是(2 , 1 ),则文化馆的位置是( )。【A. (1 , 1 ) B. (1 , 3 ) C. (3 , 1 ) 】2、小军在教室里的位置可以用点( 3 , 2 ),( 3 , 2 )中的3表示第3列,则2表示2( ),小红在教室里的位置是( 4 , 6 ),表明小红坐在第( )列第( )行。专题讲解及训练(三)主要内容 比例的意义和基本性质考点分析1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。2、表示两个比相等的式子叫做比例。3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。典型例题例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)A B C (1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少? 例2、(根据指定的比,将图形按要求放大或缩小)先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?ABC点评:按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。例3、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来.(1)5:6和15:18 (2)0.2:0.1和3:1(3):和1.2:0.8 (4)6:2和 : 点评:判断两个比能不能组成比例,可以像题目中的方法一样,求出两个比的比值,比值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论