




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AGeometricPerspectiveonMachineLearning,何晓飞浙江大学计算机学院,MachineLearning:theproblem,f,何晓飞,Information(trainingdata),f:XY,XandYareusuallyconsideredasaEuclideanspaces.,ManifoldLearning:geometricperspective,ThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.,ManifoldLearning:thechallenges,Themanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?versus,Thisisunknown:,Thisiswhatwehave:,?,?,orelse?,Topology,Geometry,Functionalanalysis,ManifoldLearning:currentsolution,FindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.,Simplicity,Simplicity,Simplicityisrelative,Manifold-basedDimensionalityReduction,Givenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?,AGoodMappingFunction,Ifxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,StokesTheorem:,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,StokesTheorem:,LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.,ManifoldofFaceImages,Expression(SadHappy),Pose(RightLeft),ManifoldofHandwrittenDigits,Thickness,Slant,Learningtarget:TrainingExamples:LinearRegressionModel,ActiveandSemi-SupervisedLearning:AGeometricPerspective,GeneralizationError,GoalofRegressionObtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate,Gauss-MarkovTheorem,Foragivenx,theexpectedpredictionerroris:,Gauss-MarkovTheorem,Foragivenx,theexpectedpredictionerroris:,Good!,Bad!,ExperimentalDesignMethods,Threemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.,ManifoldRegularization:Semi-SupervisedSetting,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,randomlabeling,ManifoldRegularization:Semi-SupervisedSetting,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,randomlabeling,activelearning,activelearning+semi-supervsedlearning,ManifoldRegularization:Semi-SupervisedSetting,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructure,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,LaplacianRegularizedLeastSquare,LinearobjectivefunctionSolution,ActiveLearning,Howtofindthemostrepresentativepointsonthemanifold?,Objective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.,ActiveLearning,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrix,AnalysisofBiasandVariance,Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.Update,Thealgorithm,ConsiderfeaturespaceFinducedbysomenonlinearmapping,and=K(xi,xi).K(,):positivesemi-definitekernelfunctionRegressionmodelinRKHS:ObjectivefunctioninRKHS:,NonlinearGeneralizationinRKHS,Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.Update,NonlinearGeneralizationinRKHS,ASyntheticExample,A-optimalDesign,LaplacianRegularizedOptimalDesign,ASyntheticExample,A-optimalDesign,LaplacianRegularizedOptimalDesign,Combiningactiveandsemi-supervisedlearningforCBIR,Firstiteration,Seconditeration,Applicationtoimage/videocompression,Videocompression,Topology,CanwealwaysmapamanifoldtoaEuclideanspacewithoutchangingitstopology?,?,Topology,SimplicialComplex,HomologyGroup,BettiNumbers,EulerCharacteristic,GoodCover,SamplePoints,Homotopy,Numberofcomponents,dimension,Topology,TheEulerCharacteristicisatopologicalinvariant,anumberth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全面扩充2025年VB考试范围试题及答案
- 数字化转型下的工作规划计划
- 湖北省武汉市江汉区度第一期期2025年数学七下期末教学质量检测试题含解析
- 山东省莱芜市莱城区腰关中学2025年数学七下期末考试模拟试题含解析
- 小班环保知识宣传与实践计划
- 企业品牌建设的阶段性总结计划
- 2025年软件设计师考试战略与试题及答案
- 2024年云南省投资促进局下属事业单位真题
- 2024年西藏自治区教育厅下属事业单位真题
- 2024年上饶师范学院辅导员考试真题
- 2025年湖北省各市(州、区)供电服务有限公司招聘笔试参考题库含答案解析
- 私人合同协议书模板
- 神经鞘瘤MRI诊断要点及鉴别诊断课件
- 120个常见文言实词例释-高考语文考前复习速记清单
- T-CEPPEA 5002-2019 电力建设项目工程总承包管理规范
- GA 1812.2-2024银行系统反恐怖防范要求第2部分:数据中心
- 《企业绩效评价标准值(2023年版)》
- 2024《整治形式主义为基层减负若干规定》全文课件
- 3.作文指导-写一种小动物课件
- DZ∕T 0227-2010 地质岩心钻探规程(正式版)
- word个人简历空白
评论
0/150
提交评论