机器学习的几何观点.ppt_第1页
机器学习的几何观点.ppt_第2页
机器学习的几何观点.ppt_第3页
机器学习的几何观点.ppt_第4页
机器学习的几何观点.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AGeometricPerspectiveonMachineLearning,何晓飞浙江大学计算机学院,MachineLearning:theproblem,f,何晓飞,Information(trainingdata),f:XY,XandYareusuallyconsideredasaEuclideanspaces.,ManifoldLearning:geometricperspective,ThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.,ManifoldLearning:thechallenges,Themanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?versus,Thisisunknown:,Thisiswhatwehave:,?,?,orelse?,Topology,Geometry,Functionalanalysis,ManifoldLearning:currentsolution,FindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.,Simplicity,Simplicity,Simplicityisrelative,Manifold-basedDimensionalityReduction,Givenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?,AGoodMappingFunction,Ifxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,StokesTheorem:,LocalityPreservingProjections,Principle:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.,Mathematicalformulation:minimizetheintegralofthegradientoff.,StokesTheorem:,LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.,ManifoldofFaceImages,Expression(SadHappy),Pose(RightLeft),ManifoldofHandwrittenDigits,Thickness,Slant,Learningtarget:TrainingExamples:LinearRegressionModel,ActiveandSemi-SupervisedLearning:AGeometricPerspective,GeneralizationError,GoalofRegressionObtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate,Gauss-MarkovTheorem,Foragivenx,theexpectedpredictionerroris:,Gauss-MarkovTheorem,Foragivenx,theexpectedpredictionerroris:,Good!,Bad!,ExperimentalDesignMethods,Threemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.,ManifoldRegularization:Semi-SupervisedSetting,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,randomlabeling,ManifoldRegularization:Semi-SupervisedSetting,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,?,randomlabeling,activelearning,activelearning+semi-supervsedlearning,ManifoldRegularization:Semi-SupervisedSetting,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructure,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,UnlabeledDatatoEstimateGeometry,Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure,ComputenearestneighborgraphG,LaplacianRegularizedLeastSquare,LinearobjectivefunctionSolution,ActiveLearning,Howtofindthemostrepresentativepointsonthemanifold?,Objective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.,ActiveLearning,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrix,AnalysisofBiasandVariance,Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.Update,Thealgorithm,ConsiderfeaturespaceFinducedbysomenonlinearmapping,and=K(xi,xi).K(,):positivesemi-definitekernelfunctionRegressionmodelinRKHS:ObjectivefunctioninRKHS:,NonlinearGeneralizationinRKHS,Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.Update,NonlinearGeneralizationinRKHS,ASyntheticExample,A-optimalDesign,LaplacianRegularizedOptimalDesign,ASyntheticExample,A-optimalDesign,LaplacianRegularizedOptimalDesign,Combiningactiveandsemi-supervisedlearningforCBIR,Firstiteration,Seconditeration,Applicationtoimage/videocompression,Videocompression,Topology,CanwealwaysmapamanifoldtoaEuclideanspacewithoutchangingitstopology?,?,Topology,SimplicialComplex,HomologyGroup,BettiNumbers,EulerCharacteristic,GoodCover,SamplePoints,Homotopy,Numberofcomponents,dimension,Topology,TheEulerCharacteristicisatopologicalinvariant,anumberth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论