




已阅读5页,还剩2页未读, 继续免费阅读
翻译一ggA pseudoinverse-based iterative learning control.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002831 A Pseudoinverse-Based Iterative Learning Control Jayati Ghosh and Brad Paden AbstractLearningcontrolisaveryeffectiveapproachfortrackingcon- trol in processes occuring repetitively over a fixed interval of time. In this note, an iterative learning control (ILC) algorithm is proposed to accom- modateageneralclassofnonlinear,nonminimum-phaseplantswithdistur- bancesandinitializationerrors.Thealgorithmrequiresthecomputationof anapproximateinverseofthelinearizedplantratherthantheexactinverse. An advantage of this approach is that the output of the plant need not be differentiated. A bound on the asymptotic trajectory error is exhibited via a concise proof and is shown to grow continuously with a bound on the dis- turbances. The structure of the controller is such that the low frequency components of the trajectory converge faster than the high frequency com- ponents. Index TermsIterative learning control (ILC), nonlinear tracking, pseudo inverse. I. INTRODUCTION Iterative learning control (ILC) refers to a class of self-tuning con- trollers where the system performance of a specified task is gradually improved or perfected based on the previous performances of identical tasks.Themostcommonapplicationsoflearningcontrolareinthearea of robot control in production industries, where a robot is required to performasingletask,saypick-and-placeanobjectalongagiventrajec- tory, repetitively. With a feedback controller alone, the same tracking error would persist in every repeated trial. In contrast, a learning con- troller can use the information from the previous execution to improve the tracking performance in the next execution. While in some appli- cations, the need to repeat a trajectory multiple times for learning may be a disadvantage, we focus our attention on those many others where learning control is a natural solution. In this note, we propose a modification of the iterative learning con- trolalgorithmpresentedin1sothatitcanbeappliedtoamoregeneric class of nonlinear nonminimum phase plants with input disturbance and output sensor noise. In Section II, a learning controller is proposed by formulating a pseudo-inverse of the linearized plant at the origin. In SectionIII,simulationexamplesarepresentedtoshowtheperformance of the proposed learning controller. Finally, Section IV concludes the note. II. NONLINEARNONMINIMUMPHASEPLANTWITHDISTURBANCES In this section, we present a robust iterative learning algorithm for nonlinear systems. We consider only square (same number of inputs and outputs) time-invariant nonlinear systems. A. System Description Consider a nonlinear system which is stable-in-first-approximation at? ? ?(i.e., the linearized plant has all the eigenvalues in the open Manuscript received September 28, 1999; revised February 27, 2001 and Oc- tober 26, 2001. Recommended by AssociateEditor S. Hara. This work was sup- ported by the National Science Foundation under Grant CMS-9800294. J. Ghosh was with the University of California, Santa Barbara, CA 93106 USA. She isnowwith Agilent Technologies,Inc., Bio-ResearchSolutions Unit, Santa Clara, CA 95051 USA (e-mail: jayati_ghosh). B. Paden is with the Department of Mechanical and Environmental Engi- neering, University of California, Santa Barbara, CA 93106 USA (e-mail: ). Publisher Item Identifier S 0018-9286(02)04754-2. left half complex plane) and also input-to-state stable ? ? ? ? ? ? ? ? ? ? ? ? ? ? where?is the index of iteration of ILC,? ?is a family of input sequence,? ? ?, ?and? ? ? and? ? ? ? ?, ? ? ? ? ?, ? ? ? ? ?, ? ? ? ? ?, ? ?, ? ?.Thefunction?representsbothrepetitiveandrandombounded disturbancesofthesystem;itmaybestiction,nonreproduciblefriction, state-independent modeling errors, etc.,?represents sensor noise. A desired trajectory?is supported on finite interval (? ? ?) of the time axis. The objective of learning is to construct a sequence of input trajectories? ?such that? ? ? and?causes the system to track a trajectory?“as closely as possible” on 0,? We make the following assumptions: (?) The functions?,?,?are continuously differentiable and?is continuous. (?)? ?, where?is a closed subset of a Banach space. (?) The system is stable-in-first-approximation and input-to-state stable. (Note: If the system is not stable, it may be stabilized prior to appli- cation of our methods). (?) The disturbances?and?are bounded by?and?, respectively (i.e.,? ? ?and? ? ?). (?) The desired trajectory?lies sufficiently close to a trajectory ? ?which satisfies the following equations: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(2) For such a system, an ILC is proposed as shown in Fig. 1. B. Formulation of Learning Controller In this section, a good candidate for the learning controller?of Fig.1isderivedbyfirstlinearizingtheplantandthena“pseudoinverse” of the linearized plant is used as the learning controller. The update law of the ILC is written in terms of the operators?, the linearized plant?, its adjoint? ?and?for? ? ?is ? ? ? ? ? ? ? ? ? ? ? ? pseudoinverse? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (3) Note that if? ? ?,? ? ? ? ? ?for all?. (Note that in Fig. 1, the truncation operator?is placed before the summing junction). Defining?: Since the nonlinear system (1) is input-to-state- stable (?) and?is continuous (?), it defines a causal nonlinear input-to-output map?as:? ? ? ? ? ? ? Since?is stable-in-first-approximation (?), we define a stable time-invariant input-to-output linear operator?by linearizing the system (1) around (? ?,? ?,? ?,? ?) as follows: ? ? ? ? ? ? ? ? ?(4) 0018-9286/02$17.00 2002 IEEE 832IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002 Fig. 1.Nonlinear learning control system?: nonlinear plant,?. Learning controller?: truncation operator. where?,?,?. Hence,? ? ? ? ? ? ?Since? ? ?and?is Hurwitz in (4) we can replace? ? ?with? ? ?and not alter the inputoutput (IO) map defined by (4), and hence, the only map provided is? ? ?. Defining? ?: Consider the IO map for the adjoint system ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(5) Since?is Hurwitz,?is hyperbolic (i.e., none of the eigen- values have zero real part). Further, (5) defines a unique noncausal mapping as shown by Devasia et al. 2 (see the Appendix ). ? ? ? ? ? ? ? ? ? ?The adjoint system satisfies the property? ? ? ?3. Defining?: Neglecting higher order terms we obtain a lin- earized plant around the solution?to (1) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(6) where? ?. Since (4) is stable, it can be proved by Lyapunov methods that (6) is also bounded-inputbounded-output (BIBO) stable if? lies within a certain bound. Note that, here also we can re- place? ? ? ?(as in (4) with? ? ? ?and not alter the IO map. Define? ? ?, ?,?,?. The stable linear system (6) has a solution and defines a linear IO map: ? ? ? ? ?. Defining? ? : Motivatedbytheconceptofapseudo-inverse4 we define learning controller by the following linear operator: ? ? ? ? ? ? ? ? (7) for? ? ?We call this “approximate inverse” the?-pseudo inverse of?. For simplicity the?pseudoinverse is referred to as simply a pseudo-inverse in the rest of this note. In time-domain using (4) and (5)? ? ? ?:? ? ? ?is ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(8) Since?isstable,(8)ishyperbolicwitheigenvalues ? ? ?. Hence, by 2? ? ? ? ? ? ? ? ?and is noncausal. Solving (8) for?, we see that the inverted operator? ? ? ? ? is ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(9) The eigenvalues of the above system are continuous functions of?. In the limit? ? ?,?is hyperbolic (since?is Hurwitz). Thus, we can always choose an?for which?is hyperbolic. The system (9) is solved by the stable-noncausal-solution approach of Devasia et al. 2. Hence,? ? ? ? ? ? ? ? ? ? ? ? Thelearningcontrolleristhepseudoinverse ? ? ? ?and is given in time-domain by ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(10) ?isblockdiagonal,thereforetheeigenvaluesof?areeigenvaluesof ?(9)and?.Since?ishyperbolicforsome?,?ishyperbolic. Hence,? ? ? ? ? ? ?,? ?and the solution of the linear controller described by (10) can be obtained using stable-noncausal-solution approach 2. (Using initial conditions at? ? ?ratherthan? ? ?allowsustocontrol?via?. Thus tracking performance can be improved relative to assumptions of ? ? ?on?and? ? ?). C. Convergence Analysis Definition 1: We define the?norm for a function? ? ? ? ? by ? ? ?(11) Note that? ? ?for? ? ?, implying that ?and?are equivalent norms. Thus convergence results can be proved using either norm. Induced?-norm:? ? ? ?. Define the Fourier transform of?by? ? ?. Condition 1:? ? ? ? ? ?(i.e., no finite or infinite zeros on?axis). Observe that? ? ?. Theorem 1: If the assumptions (?) and Condition 1 are satis- fied, then the algorithm (3) produces a sequence of inputs which con- verges to?, if there are no disturbances (i.e.,? ?and? ?) and no initialization errors (? ? ? ?). If?and?are bounded and the initial state error is bounded (? ? ? ? ?),? converges to?, as? ? ?. The radius?of the ball? depends continuously on the bounds on the disturbances?and?and the initialization error. If there exists a? ? ?with ? ? ?, then?converges to the desired input solution?. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002833 Proof: The proof relies on the application of a variant of the con- traction mapping theorem 5 to the input sequence. The main idea of the proof is to show that? ? ?where? ? ? ? ? ?. This implies that? ? ? ?, where?is a continuous function of the bounds on dis- turbances and initialization error. Construct the sequence? ? by defining: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?is denoted by?for simplicity in the rest of this note. Now, from (3) and the linearity of the truncation operator, (12), shown at the bottom of the page, holds. Following 6, we show that the Frechet derivative of?is given by?. That is,? satisfies ? ? ? ? ? ? ? ? ? ? ? ? ?(13) In (13), let?be defined by:? ? ? ? ? ?From (13), we can see?is?Denoting? ?, we can rewrite (12) as ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Since?is?, ? ? ? ? ? ? ? ? ? ? This implies that? ? ? ? ? ? ?such that? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(14) Bounding? ?and?: Fromassumptions?,?,?: ? ? ? ? ? ? ?,? ? ? ? ?, ? ? ? ? ?,? ? ?. Therefore,? ? ? ? ? ? ? ? ?From (6), we can write ? ? ? ? ? ? ? ? ? ? ? ? ? ?(15) Therefore, using the triangle-inequality and bounds on?and?, we have? ? ? ? ? ? ? ? ? ?. Using GronwallBellman inequality (see 5, p. 63)? ? ? ? ? ? ? ? ? ?.Multiplying(15) by?, defining?and assuming? ? ?we have ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Note that for a constant? ?. Taking?over? ? ?we have ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(16) Similarly from (4), it can be proved ? ? ? ? ? ? ? ? ? ? ?(17) where?is the input to (4). Defining?: Define a linear operator? ?, so that ? ? ? ?(18) From (6),theoutput of theoperator?is:? ? ? ? ? ?and from (4) the output of the operator?is? ? ?. This implies,? ? ? ? ? ? ? ? ? ? ? ? ?. Therefore, using (16), (17), and the bound on?we can write ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Showing Contraction Mapping: From (12), we have the equa- tion shown at the bottom of the next page. Define? ? ? ? ?. It can be shown in the fol- lowing way that if?satisfies Condition 1, then? ? ? ? ? ? ?, where? ? ? ?With the choice of?sufficiently small,?can be made arbitrarily small. Let? ? ? ? ?, ? ? ? ? ? ?and ? ? ? ? ?. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (?: Fourier Transform) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(12) 834IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002 If Condition 1 is satisfied, then? ? ? ?where? ? ?Consider again (19). Let? ? ? ? ?so that ? ? ? ? ?Note that ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? (19) Therefore, we can write,? ? ? ? ? ?; using (19)? ? ? ? ? ? ? ? ? ? ? where? ? ? ?. With the choice of?,?can be made arbitrarily small. Ifthe transferfunction corresponding to?is strictlyproper then the Condition 1 is not satisfied at? ? ?. Then as? ? ? ? ? ?and, intuitively, high frequency components of the input sequence would converge slowly. In that case, the learning controller must be modified in the following way: Instead of considering? ? ? ?as the learning op- erator, take? ? ? ? ? ? ? as the modified learning con- troller, where? ? ?is obtained by adding a feedfor- ward term to?. Hence,?is given by modified (4) as follows: ? ? ? ? ? ? ? ? ? ? ?(20) where? ? ? ?. The modified operator satisfies Condition 1 and theconvergenceanalysisproceedsinthesamewaywith?sufficiently small. Substituting the bounds on? ?from (19) and multiplying (19) by?, we can write?norm of (19) taking?over? ? ?as ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? where?is the norm bounds of the initial state errors.?and ?are the norm bounds of the input and output disturbances re- spectively. Since? ? ?, with sufficiently small?, we can find a? ? ? ?which makes? ? ? ?Therefore, we can write: ? ? ? ? ? ? ? ? ? ? ? ? ?where?combines the norm bounds of the initial state errors of the controller and dis- turbances. Therefore,? ? ? ? ? i.e.,?such that? ? ?,? ?, where?is the fixed point of the contraction mapping?and?is an open ball of radius ? ? ? ? ?and center?. If the disturbances and initialization errors are absent,? ?, and hence,?converges to?If? ?such that? ? ?, the fixed point?of the contraction mapping? is shown to be?in the absence of?,?and initialization error. If ? ?,? ?and? ? ? ?. This implies, the output (?) of the learning controller? ? ? ? ? ?is zero. Therefore,? ? ? ? ? ? ? ? ? ? ? ? ? Oncethecontractionisproved,itcanbeshownthat?(aspreviously defined) is also a mapping from a closed subspace of the Banach space (?) intoitself,and hence,?is acontractionmapping.To show this, consider a desired trajectory? ?. Then from (2),? ? for? ? ?. In (12), if we consider? ? ?, then, since ? ? ?(where? ? ?),?is a mapping from a closed ball around? ?into itself. Note that, the size of the ball around ? ?must be small enough that (14) is also satisfied. Hence, if the initial trajectory?lies in the neighborhood of? ?,?maps the neighborhood into itself for all?. Without loss of generality, we can consider another pair? ? ? ?and? ? ?(as given by (2). By continuity,?maps a closed neighborhood into itself even when?is sufficiently close to? ?. This is the motivation of?. III. SIMULATIONRESULTS Simulation Results With Input Disturbances In this section, we perform simulation studies with a single- inputsingle-output (S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书发行合同3篇
- 预交保证金租房合同2篇
- 琵琶课件教学课件
- 甘孜建设工程检测方案(3篇)
- 福州净化工程方案(3篇)
- 理想信念课件
- 电网工程签证方案实例(3篇)
- 安全整改教育培训课件
- 农业温室智慧农业技术在国际市场的应用与发展研究报告
- 地质工程策划方案模板(3篇)
- 1.1 常见的植物(教学课件)科学青岛版二年级上册(新教材)
- 2025年人教部编版小学三年级语文上册全册单元测试题及答案(全套)
- 北京师范大学心理学学术学位研究生培养方案(2023版)
- 部编新教材小学五年级语文上册全册同步练习课堂作业课课练课时练
- 基层群众自治制度课件
- GA 568-2022警服夏执勤短袖衬衣
- 上肢主要神经损伤诊断
- GB/T 38381-2019新闻出版知识服务知识元描述
- GB/T 24600-2009城镇污水处理厂污泥处置土地改良用泥质
- GB/T 1839-2008钢产品镀锌层质量试验方法
- 检验科标本采集手册
评论
0/150
提交评论