垂直平分线高二数学教案.doc_第1页
垂直平分线高二数学教案.doc_第2页
垂直平分线高二数学教案.doc_第3页
垂直平分线高二数学教案.doc_第4页
垂直平分线高二数学教案.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

垂直平分线高二数学教案 教学目的: 1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题 2、了解线段垂直平分线的轨迹问题 3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力 教学重点: 线段的垂直平分线性质定理及逆定理的引入证明及运用 教学难点: 线段的垂直平分线性质定理及逆定理的关系 教学关键: 1、垂直平分线上所有的点和线段两端点的距离相等 2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上 教具:投影仪及投影胶片 教学过程: 一、提问 1、角平分线的性质定理及逆定理? 2、怎样做一条线段的垂直平分线? 二、新课 1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做) 2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系? 通过学生的观察、分析得出结果PA=PB,再取一点P试一试仍然有PA=PB,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示) 定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等 这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理 例题: 已知:如图,直线EFAB,垂足为C,且AC=CB,点P在EF上 求证:PA=PB 如何证明PA=PB学生分析得出只要证RTPCARTPCB 答:证明:PCAB(已知) PCA=PCB(垂直的定义) 在PCA和PCB中 PCAPCB(SAS) 即:PA=PB(全等三角形的对应边相等) 反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上? 过P,P1做直线EF交AB于C,可证明PAP1PBP1(SSS) EF是等腰三角型PAB的顶角平分线 EF是AB的垂直平分线(等腰三角形三线合一性质) P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示) 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合 线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合 三、举例(用幻灯展示) 例:已知,如图ABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC 证明:点P在线段AB的垂直平分线上 PA=PB 同理PB=PC PA=PB=PC 由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等 四、小结 正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径定理的作用是可证明两条线段相等或点在线段的垂直平分线上 教案设计说明 线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹在几何证明、计算、作图中都有重要应用我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用 在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论从而把知识的形成过程转化为学生亲自参与、发现、探索的过程在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解在讲解例题时引导学生用所学的线段垂直平分线的性质定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论