数学中考压轴.doc_第1页
数学中考压轴.doc_第2页
数学中考压轴.doc_第3页
数学中考压轴.doc_第4页
数学中考压轴.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

你的首选资源互助社区1将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ABD不动,将ABC向轴的正方向平移到FGH的位置,FH与BD相交于点P,设AF=t,FBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.EDCHFGBAPyx图1010DCBAE图9(08广东东莞22题解析)解:(1),1分等腰;2分 (2)共有9对相似三角形.(写对35对得1分,写对68对得2分,写对9对得3分) DCE、ABE与ACD或BDC两两相似,分别是:DCEABE,DCEACD,DCEBDC,ABEACD,ABEBDC;(有5对)ABDEAD,ABDEBC;(有2对)BACEAD,BACEBC;(有2对)所以,一共有9对相似三角形.5分K(3)由题意知,FPAE, 1PFB,又 1230, PFB230, FPBP.6分过点P作PKFB于点K,则. AFt,AB8, FB8t,.在RtBPK中,. 7分 FBP的面积, S与t之间的函数关系式为: ,或. 8分t的取值范围为:. 9分2(本题满分12分)如图19-1,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;(2)如图19-2,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标yxBCOADE图19-1yxBCOADE图19-2PMN(08甘肃兰州28题解析)(本题满分12分)解:(1)依题意可知,折痕是四边形的对称轴,在中,点坐标为(2,4)2分在中, 又 解得:点坐标为3分(2)如图,又知, 又而显然四边形为矩形5分,又当时,有最大值6分(3)(i)若以为等腰三角形的底,则(如图)在中,为的中点,yxBCOADE图PMNF又,为的中点过点作,垂足为,则是的中位线,当时,为等腰三角形此时点坐标为8分(ii)若以为等腰三角形的腰,则(如图)yxBCOADE图PMNF在中,过点作,垂足为,当时,(),此时点坐标为11分综合(i)(ii)可知,或时,以为顶点的三角形为等腰三角形,相应点的坐标为或12分3已知抛物线,()若,求该抛物线与轴公共点的坐标;()若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;()若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由(08天津市卷26题解析)解()当,时,抛物线为,方程的两个根为, 该抛物线与轴公共点的坐标是和 2分()当时,抛物线为,且与轴有公共点对于方程,判别式0,有 3分当时,由方程,解得此时抛物线为与轴只有一个公共点 4分当时, 时,时,由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为,应有 即解得综上,或 6分()对于二次函数,由已知时,;时,又,于是而,即 7分关于的一元二次方程的判别式, 抛物线与轴有两个公共点,顶点在轴下方8分又该抛物线的对称轴,x由,得,又由已知时,;时,观察图象,可知在范围内,该抛物线与轴有两个公共点 10分4如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0)动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,OPC的面积S随着z的变化而变化的图象如图2所示m,n是常数, m1,n0(1)请你确定n的值和点B的坐标;(图1) (图2) (第25题)(2)当动点P是经过点O,C的抛物线yaxbxc的顶点,且在双曲线y上时,求这时四边形OABC的面积(08湖北宜昌25题解析)解:(1) 从图中可知,当P从O向A运动时,POC的面积Smz, z由0逐步增大到2,则S由0逐步增大到m,故OA2,n2 . (1分)同理,AB1,故点B的坐标是(1,2).(2分)(2)解法一:抛物线yaxbxc经过点O(0,0),C(m ,0),c0,bam,(3分)抛物线为yaxamx,顶点坐标为(,am2).(4分)(25题图1)如图1,设经过点O,C,P的抛物线为l.当P在OA上运动时,O,P都在y轴上,这时P,O,C三点不可能同在一条抛物线上,这时抛物线l不存在, 故不存在m的值.当点P与C重合时,双曲线y不可能经过P,故也不存在m的值.(5分)(说明:任做对一处评1分,两处全对也只评一分)当P在AB上运动时,即当02,与 x1不合,舍去.(6分)容易求得直线BC的解析式是:,(7分)当P在BC上运动,设P的坐标为 (x,y),当P是顶点时 x,故得y,顶点P为(,),1 x2,又P在双曲线y上,于是,化简后得5m22m220, 解得,(8分)与题意2xm不合,舍去.(9分)故由,满足条件的只有一个值:.这时四边形OABC的面积.(10分)(2)(25题图2)解法二:抛物线yaxbxc经过点O(0,0),C(m ,0)c0,bam,(3分)抛物线为yaxamx,顶点坐标P为(,am2). (4分)m1,0,且m,P不在边OA上且不与C重合. (5分)P在双曲线y上,( am2)即a .当1m2时,1,如图2,分别过B,P作x轴的垂线,M,N为垂足,此时点P在线段AB上,且纵坐标为2,am22,即a.而a , ,m2,而1m2,不合题意,舍去.(6分)当m2时,1,如图3,分别过B,P作x轴的垂线,M,N为垂足,ONOM,此时点P在线段CB上,易证RtBMCRtPNC,BMPNMCNC,即: 2PN(m1),PN(7分)而P的纵坐标为 am2, am2,即a(25题图3)而a, 化简得:5m222m220.解得:m ,(8分)但m2,所以m舍去,(9分)取m .由以上,这时四边形OABC的面积为:(ABOC) OA(1m) 2. (10分)yxO第26题图DECFAB5(08辽宁沈阳26题)(本题14分)26如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,矩形绕点按顺时针方向旋转后得到矩形点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点(1)判断点是否在轴上,并说明理由;(2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由(08辽宁沈阳26题解析)解:(1)点在轴上1分理由如下:连接,如图所示,在中,由题意可知:点在轴上,点在轴上3分(2)过点作轴于点,在中,点在第一象限,点的坐标为5分由(1)知,点在轴的正半轴上点的坐标为点的坐标为6分抛物线经过点,由题意,将,代入中得 解得所求抛物线表达式为:9分(3)存在符合条件的点,点10分理由如下:矩形的面积以为顶点的平行四边形面积为由题意可知为此平行四边形一边,又边上的高为211分依题意设点的坐标为点在抛物线上解得,以为顶点的四边形是平行四边形,yxODECFABM,当点的坐标为时,点的坐标分别为,;当点的坐标为时,点的坐标分别为,14分AOxyBFC图166.(08辽宁12市26题)(本题14分)26如图16,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点(1)求过三点抛物线的解析式并求出顶点的坐标;(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由(08辽宁12市26题解析)解:(1)直线与轴交于点,与轴交于点,1分点都在抛物线上, 抛物线的解析式为3分顶点4分(2)存在5分7分9分(3)存在10分理由:解法一:延长到点,使,连接交直线于点,则点就是所求的点 11分AOxyBFC图9HBM过点作于点点在抛物线上,在中,在中,12分设直线的解析式为 解得13分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论