数理方程在实际中的应用.doc_第1页
数理方程在实际中的应用.doc_第2页
数理方程在实际中的应用.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数理方程在实际中的应用数学是一门很抽象的学科,而数理方程更是如此,如果直接想象很难和实际联系起来。数学物理方程是指在物理学、力学、工程技术等问题中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程。虽然比较难联系实际去寻找偏微分方程的应用,但是实际中很多东西离不开数学物理方程,其中热方程便是一个广泛应用的例子。其中热方程在许多现象的数学模型中出现,而且常在金融数学中作为期权的模型出现。著名的布莱克-斯科尔斯模型中的差分方程可以转成热方程,并从此导出较简单的解。还有热方程在流形上的推广是处理阿蒂亚-辛格指标定理的主要工具之一,由此也导向热方程在黎曼几何中的许多深入应用。拉普拉斯方程为:u=d2u/dx2+d2u/dy2=0,其中 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数而拉普拉斯方程,在电磁场方面广泛,而我们打电话依赖的电磁场便与其联系紧密。于是当我们要的信息得以传递波动是一种重要的偏微分方程,主要描述自然界中的各种的波动现象。工业生产例如开采煤矿,煤矿很容易塌方,而了解煤层的岩土结构较为重要,在生产过程应该避免共振,于是就需要波动方程去解或是计算煤层是否能安全生产,是否易塌方。所以,不管是经济金融问题,工业生产问题;还是日常生活手机问候远方的朋友,使用卫星电视观看电视剧,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论