




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线和圆的位置关系切线及切线性质定理,初中数学九年级上册(苏科版,直线和圆相交,驶向胜利的彼岸,dr;,dr;,直线和圆相切,直线和圆相离,dr;,直线与圆的位置关系,驶向胜利的彼岸,1.已知RtABC的斜边AB=8cm,直角边AC=4cm.,(1)以点C为圆心作圆,当半径为多长时,AB与C相切?,老师提示:模型“双垂直三角形”你可曾认识.,解:(1)过点C作CDAB于D.,AB=8cm,AC=4cm.,因此,当半径长为cm时,AB与C相切.,驶向胜利的彼岸,1.已知RtABC的斜边AB=8cm,直角边AC=4cm.,(2)以点C为圆心,分别以2cm,4cm为半径作两个圆,这两个圆与AB分别有怎样的位置关系?,当r=4cm时,dr,AB与C相离;,解:(2)由(1)可知,圆心到AB的距离d=cm,所以,驶向胜利的彼岸,动一动脑,如图,OA是O的半径,过A作直线OA,若设圆的半径为r,直线与O位置关系如何,为什么?,驶向胜利的彼岸,切线的判定定理,经过半径的外端并且垂直于这条半径的直线是圆的切线.,切线的判定定理,驶向胜利的彼岸,例题,例1ABC内接于O,AB是O的直径,CAD=ABC,判断直线AD与O的位置关系,并说明理由.,驶向胜利的彼岸,例题,变式ABC内接于O,AB是O的弦,CAD=ABC,判断直线AD与O的位置关系,并说明理由.,证明一条直线是圆的切线时:直线与圆有交点时,连接交点与圆心,证垂直.,探索切线性质,如图,直线CD与O相切于点A,直径AB与直线CD有怎样的位置关系?说说你的理由.,直径AB垂直于直线CD.,驶向胜利的彼岸,老师期望:圆的对称性已经在你心中落地生根.,小颖的理由是:右图是轴对称图形,AB是对称轴,沿直线AB对折图形时,AC与AD重合,因此,BAC=BAD=90.,探索切线性质,小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.,假设AB与CD不垂直,过点O作OMCD,垂足为M,驶向胜利的彼岸,则OMOA,即圆心O到直线CD的距离小于O的半径,因此,CD与O相交.这与已知条件“直线CD与O相切”相矛盾.,所以AB与CD垂直.,切线的性质定理,参考小颖和小亮的说理过程,请你写出这个命题,定理圆的切线垂直于过切点的半径.,驶向胜利的彼岸,如图CD是O的切线,A是切点,CDOA.,已知直线和圆相切时:常连接切点与圆心。-辅助线,驶向胜利的彼岸,切线的性质定理的应用,1.直线BC与半径为r的O相交,且点O到直线BC的距离为5,求r的取值范围.,2.一枚直径为d的硬币沿直线滚动一圈.圆心经过的距离是多少?.,老师提示:硬币滚动一圈,圆心经过的路经是与直线平行的一条线段,其长度等于圆的周长.,驶向胜利的彼岸,例题,例2PA、PB是O的切线,切点分别为A、B,C是O上一点,若APB=40,求ACB的度数.,已知直线和圆相切时:常连接切点与圆心。-辅助线,驶向胜利的彼岸,例题,例3点O是DPC的角平分线上的一点,O与PD相切于A,求证:PC与O相切.,证明一条直线是圆的切线时:直线与圆“无”交点时,过圆心作直线的垂线,证明垂线段的长等于半径.,驶向胜利的彼岸,小结,证明一条直线是圆的切线时(1)直线与圆有交点时,连接交点与圆心,证垂直;(2)直线与圆“无”交点时,过圆心作直线的垂线,证明垂线段的长等于半径.,经过半径的外端并且垂直于这条半的直线是圆的切线.,切线的判定定理,切线的性质定理,圆的切线垂直于过切点的半径.,证明一条直线是圆的切线时,挑战自我,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化标准创新-洞察及研究
- 部队安全保密培训内容课件
- 九年级历史第一次测试试卷
- 广西壮族自治区钦州市第四中学2025-2026学年高三上学期开学考试历史试卷(含答案)
- 2024-2025学年内蒙古巴彦淖尔市乌拉特前旗八年级(上)期末数学试卷(含部分答案)
- 基于元学习的个性化信息检索方法-洞察及研究
- 基于拓扑优化的剪式平衡支撑结构轻量化设计对施工效率的影响评估
- 基于工业4.0的减速机支架智能化制造工艺与质量控制体系重构
- 基于AI驱动的动态阻抗匹配算法在宽带增益平坦度中的应用
- 国际标准差异背景下前盖密封条出口认证的技术适配策略
- 中国人民抗日战争纪念馆面向社会公开招聘工作人员模拟检测试卷【共1000题含答案解析】
- 高考688个高频词汇 word版
- 农副产品购销合同完整版(2篇)
- GB/T 9115.4-2000环连接面对焊钢制管法兰
- 一年级数学上册左、右练习题及答案解析
- GB 9743-1997轿车轮胎
- 小学语文口语交际教学讲座PPT
- 上海建筑装饰集团发展战略报告(doc 30)
- 《基础统计》教学案例“郑州市大瓶装纯水市场调查”统计应用案例
- DB36_T 1157-2019 瓷土、瓷石矿产地质勘查规范(高清无水印-可复制)
- 《大型企业财务数智化转型白皮书》
评论
0/150
提交评论