




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
03:25,1/35,第三讲Matlab的变量与矩阵,03:25,2/35,一、变量,1、赋值语句变量=表达式其中表达式是用运算符将有关运算量连接起来的式子,其结果是一个矩阵a=3+4i;b=5-sqrt(13)+exp(1.52);C=1,3,4;D=Thisisastring;,03:25,3/35,2、内存变量的删除与修改who显示工作内存中的变量、变量名whos显示变量的详细信息,如维数、元素个数、占用字节clear清除变量clc清屏,03:25,4/35,二、矩阵的建立(1),1.直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素。具体方法如下:将矩阵的元素用方括号括起来,按矩阵行的顺序输入各元素,同一行的各元素之间用空格或逗号分隔,不同行的元素之间用分号分隔。a1=123A2=1,2,3A3=1;2;3,03:25,5/35,二、矩阵的建立(2),2.行向量的建立冒号表达式可以产生一个行向量,一般格式是:x=初值:增量:终值x=e1:e2:e3其中e1为初始值,e2为步长,e3为终止值。x初值:终值增量省略,则步长默认为1t=0:0.01:10n=1:100;,03:25,6/35,在MATLAB中,还可以用linspace函数产生行向量。调用格式为:linspace(a,b,n)其中a和b是生成向量的第一个和最后一个元素,n是元素总数。显然,linspace(a,b,n)与a:(b-a)/(n-1):b等价。,03:25,7/35,二、矩阵的建立(3),3.大矩阵的建立法一:(1)在CommandWindow(命令窗口)里,向一个新变量赋“空”阵。A=;(2)在WorkSpace(工作空间口)中,双击该变量,打开数组编辑器,03:25,8/35,法二:由小矩阵或向量建立大矩阵。a111;222;b=333;c=ab错ca;b对,03:25,9/35,二、矩阵的建立(4),4.利用forend语句建立矩阵1)利用单层循环语句formatrat%使用分数来表示数值x=zeros(1,8);%x是一个1行8列的零矩阵fori=1:8,x(i)=1/i;end,03:25,10/35,2)利用多层循环语句a=zeros(5,5);fori=1:5,forj=1:5,a(i,j)=1/(i+j-1);endend,03:25,11/35,二、矩阵的建立(5),5.利用M文件建立矩阵对于比较大且比较复杂的矩阵,可以为它专门建立一个M文件。下面通过一个简单例子来说明如何利用M文件创建矩阵。例:利用M文件建立矩阵。(1)启动有关编辑程序或MATLAB文本编辑器,并输入待建矩阵:需要加方括号。(2)把输入的内容以纯文本方式存盘(设文件名为mymatrix.m)。(3)在MATLAB命令窗口中输入mymatrix,即运行该M文件,就会自动建立一个名为ans的矩阵,可供以后使用。,03:25,12/35,三、矩阵的元素提取与拆分,1、用矩阵元素的序号来引用矩阵元素。矩阵元素的序号就是相应元素在内存中的排列顺序。在MATLAB中,矩阵元素按列存储,先第一列,再第二列,依次类推。例如:A=1,2,3;4,5,6;A(3)ans=2显然,序号(index)与下标(subscript)是一一对应的,以mn矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。其相互转换关系也可利用sub2ind和ind2sub函数求得。,03:25,13/35,2、提取子矩阵(1)利用冒号表达式获得子矩阵A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素。A(i:i+m,:)表示取A矩阵第ii+m行的全部元素;A(:,k:k+m)表示取A矩阵第kk+m列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第ii+m行内,并在第kk+m列中的所有元素。A(i,j,k,l,m,n表示取A矩阵的i,j,k行与l,m,n相交处的元素,03:25,14/35,四、初等赋值矩阵,zeros(m,n)建立m行,n列,元素值全为0的矩阵ones(m,n)m*n全1矩阵eye(m,n)%m*n单位矩阵rand(m,n)01间均匀分布randn(m,n)均值0,标准差为1的正态分布,03:25,15/35,五、特殊矩阵(1),1、魔术矩阵魔术矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。对于n阶魔术矩阵,其元素由1,2,3,nn共nn个整数组成。MATLAB提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。magic(n)nn的魔术矩阵magic(3)816357492n0且不等于2,03:25,16/35,五、特殊矩阵(2),2、范得蒙矩阵范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。可以用一个指定向量生成一个范得蒙矩阵。在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。vander(1,2,3,4)ans=1111842127931641641,03:25,17/35,五、特殊矩阵(3),3、希尔伯特矩阵在MATLAB中,生成希尔伯特矩阵的函数是hilb(n)。通项为,使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。MATLAB中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。a=hilb(4)a=1.00000.50000.33330.25000.50000.33330.25000.20000.33330.25000.20000.16670.25000.20000.16670.1429,03:25,18/35,五、特殊矩阵(4),4、托普利兹矩阵托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。这里x,y均为向量,两者不必等长。toeplitz(x)用向量x生成一个对称的托普利兹矩阵。toeplitz(1:3,1:2:5)ans=135213321,03:25,19/35,五、特殊矩阵(5),5、帕斯卡矩阵我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。函数pascal(n)生成一个n阶帕斯卡矩阵。pascal(6)ans=111111123456136101521141020355615153570126162156126252,03:25,20/35,六、矩阵的算术运算,MATLAB的基本算术运算有:(加)、(减)、*(乘)、/(右除)、(左除)、(乘方)。注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。(1)矩阵加减运算假定有两个矩阵A和B,则可以由A+B和A-B实现矩阵的加减运算。运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算,A和B矩阵的相应元素相加减。如果A与B的维数不相同,则MATLAB将给出错误信息,提示用户两个矩阵的维数不匹配。(2)矩阵乘法假定有两个矩阵A和B,若A为mn矩阵,B为np矩阵,则C=A*B为mp矩阵。,03:25,21/35,(3)矩阵除法在MATLAB中,有两种矩阵除法运算:和/,分别表示左除和右除。如果A矩阵是非奇异方阵,则AB和B/A运算可以实现。AB等效于A的逆左乘B矩阵,也就是inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是B*inv(A)。对于含有标量的运算,两种除法运算的结果相同,如3/4和43有相同的值,都等于0.75。又如,设a=10.5,25,则a/5=5a=2.10005.0000。对于矩阵来说,左除和右除表示两种不同的除数矩阵和被除数矩阵的关系。对于矩阵运算,一般ABB/A。(4)矩阵的乘方一个矩阵的乘方运算可以表示成Ax,要求A为方阵,x为标量。,03:25,22/35,七、矩阵的点运算,在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.和.。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。例:A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型阵列,或至少有一个为标量。对应于相应的元素A=22;22B=44;44;A.*B=88;88B.A=161;1616A.B=22;22A./B=0.50000.5000;0.50000.5000,03:25,23/35,八、逻辑运算,MATLAB提供了3种逻辑运算符:4:6;7:9adiag=diag(a)atril=tril(a)atriu=triu(a)b=a2*abdiag=diag(b)btril=tril(b)btriu=triu(b),03:25,28/35,十、矩阵分析(2),2、矩阵的转置与旋转1)矩阵的转置转置运算符是单撇号()。2)矩阵的旋转利用函数rot90(A,k)将矩阵A逆时针旋转90的k倍,当k为1时可省略。a=134135rot90(a,1)453311,03:25,29/35,3)矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。MATLAB对矩阵A实施左右翻转的函数是fliplr(A)。4)矩阵的上下翻转MATLAB对矩阵A实施上下翻转的函数是flipud(A)。,03:25,30/35,十、矩阵分析(3),3、矩阵特征运算1)矩阵的秩矩阵线性无关的行数与列数称为矩阵的秩。在MATLAB中,求矩阵秩的函数是rank(A)。2)矩阵的迹矩阵的迹等于矩阵的对角线元素之和,也等于矩阵的特征值之和。在MATLAB中,求矩阵的迹的函数是trace(A)。,03:25,31/35,3)方阵的行列式把一个方阵看作一个行列式,并对其按行列式的规则求值,这个值就称为矩阵所对应的行列式的值。在MATLAB中,求方阵A所对应的行列式的值的函数是det(A)。4)矩阵的逆如果A是一个满秩方阵,A有逆矩阵AA1E,A1inv(a),03:25,32/35,5)矩阵的伪逆如果矩阵A不是一个方阵,或者A是一个非满秩的方阵时,矩阵A没有逆矩阵,但可以找到一个与A的转置矩阵A同型的矩阵B,使得:ABA=ABAB=B此时称矩阵B为矩阵A的伪逆,也称为广义逆矩阵。在MATLAB中,求一个矩阵伪逆的函数是pinv(A)。,03:25,33/35,十、矩阵分析(4),4、矩阵的特征值与特征向量在MATLAB中,计算矩阵A(A必为方阵)的特征值和特征向量的函数是eig(A),常用的调用格式有2种:(1)E=eig(A):求矩阵A的全部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年攀枝花市盐边县事业单位春季引才考核的考前自测高频考点模拟试题及答案详解(夺冠)
- 2025年上海大学公开招聘岗位(第二批)模拟试卷完整参考答案详解
- 2025届山东济南城建集团有限公司春季招聘24名笔试题库历年考点版附带答案详解
- 2025年芜湖安徽工程大学高层次人才招聘60人模拟试卷及完整答案详解一套
- 2025广东省农业科学院设施农业研究所招聘劳动合同制人员1人模拟试卷有答案详解
- 2025安徽“合肥工科同道产业园管理有限公司部分岗位外包服务”招聘4人笔试题库历年考点版附带答案详解
- 2025湖北十堰市城市发展控股集团有限公司及所属子公司招聘拟聘用人员模拟试卷含答案详解
- 2025海南保亭农水投资有限公司第二次招聘7人(代农水投公司发布)模拟试卷附答案详解(典型题)
- 2025广西南宁市博物馆招聘编外人员3人模拟试卷及参考答案详解
- 2025人民日报社山西分社公开招聘工作人员1人笔试题库历年考点版附带答案详解
- 2025年CIA考试题库(附答案)
- 2025年招录考试-法院书记员考试历年参考题库含答案解析(5套典型题)
- 2025关于销售人员的劳动合同样本
- 精神科护理科普:理解与关爱慢性精神疾病患者
- 法律与道德小学生课件
- vivo公司管理制度
- DB31/T 804-2014生活饮用水卫生管理规范
- 儿童早期矫正教学课件
- 银行代销业务管理制度
- 运动素质知到课后答案智慧树章节测试答案2025年春浙江大学
- 招聘话术培训
评论
0/150
提交评论