(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf_第1页
(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf_第2页
(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf_第3页
(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf_第4页
(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf_第5页
已阅读5页,还剩51页未读 继续免费阅读

(控制理论与控制工程专业论文)广义预测控制简化算法研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江理工大学学位论文版权使用授权书 学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留 并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅或借阅。 本人授权浙江理工大学可以将本学位论文的全部或部分内容编入有关数据库进 行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 保密口,在 不保密囵。 学位论文作者签名:多覆二拳 日期:如f d 年3 月f 多日 年解密后使用本版权书。 指导教师签名:彦】| i 乡l , 日期2 如f 毋多月i 多日 浙江理工大学硕士学位论文 摘要 广义预测控制技术最初由c l a r k e 和其合作者于1 9 8 4 年提出,它采用传统的参 数模型( 如c a m m a 模型) ,参数的数目较少,对于过程参数慢时变的系统,易于 在线估计参数。由于引入了不相等的预测水平和控制水平,具有预测模型、滚动 优化和反馈校正三个基本特征,呈现了优良的控制性能,被认为是具有代表性的 预测控制算法之一,受到学术和工程界的广泛关注。但是基本的广义预测控制需 要进行矩阵求逆运算,计算量很大,不适合要求快速响应的实时控制系统。本文 在参考大量国内外文献的基础上,对广义预测控制算法进行了简化研究,并针对 典型的工业过程模型进行了仿真和实验研究。 ( 1 ) 针对一类工业控制过程的快速无超调要求,本文引入阶梯式控制方法, 避免了传统广义预测控制中逆矩阵运算量大的问题。同时利用单值广义预测控制 的方法求出下一步控制增量并用来补偿当前控制量,提出了一种快速无超调的预 测控制方法,并给出了方法实施步骤。仿真结果表明,本算法能有效地抑制超调, 控制速度快,鲁棒性好。 ( 2 ) 针对在实际控制系统中,约束条件几乎无处不在的情况,提出一种输入 受限的输出增量反馈广义预测控制算法。该算法通过离线计算未来控制增量序列 的方式避免了求逆矩阵运算,大大地减少了计算量。而且,在输入和输入增量有 约束的条件下,只需在线调整最大输出增量的设定值就可求出约束条件下的最优 控制量,保证输出渐进稳定跟踪设定值。仿真结果证明了该算法的有效性。 ( 3 ) 对传统的输出增量反馈预测控制算法进行了简化,避免了高维逆矩阵而 带来的计算困难,提出了基于b p 神经网络的最大输出增量在线自整定的广义预测 控制。与一般输出增量反馈预测控制算法相比,利用神经网络在线调整汐值可以使 系统跟踪速度快且无超调,有效地避免了人工选取参数的困难。仿真结果表明了 本算法的有效性。 ( 4 ) 针对一类大惯性、慢时变对象,本文在基本广义预测控制算法的基础上, 用实际误差对模型预测输出进行校正,引入阶梯控制方法,充分利用预测信息, 给出了一种具有平滑滤波作用的控制律,提出了一种改进的广义预测算法。同时 设计了一个基于组态王的水箱液位监控系统,并采样所提出的算法在该监控系统 中进行实验研究。实验结果表明:与基本的广义预测控制结果相比,本算法能有 l 一 浙江理工大学硕士学位论文 一_ l_ 效地抑制超调,抗干扰性强,鲁棒性好。 本文对所提出的算法不仅在理论上进行了推导,还进行了大量的仿真实验和 实验研究,结果表明了本文所提算法的有效性。 关键词:广义预测控制;抑制超调;算法简化;约束控制 l l a b s t r a c t t h eg e n e r a l i z e dp r e d i c t i v ec o n t r o l ( o v c ) w a sp r o p o s e do r i g i n a l l yb yc l a r k ea n d h i sc o l l a b o r a t o r si n 19 8 4 ,w h i c hu s e dt h et r a d i t i o n a l p a r a m e t e rm o d e l s ( s u c h 嬲 c a r i m am o d e l ) t h en u m b e ro fm o d e lp a r a m e t e r si ss m a l la n di t i se a s yt oe s t i m a t e p a r a m e t e r so n l i n ef o rs l o wt i m e v a r y i n gs y s t e m s t h eu n e q u a lf o r e c a s tl e v e l 觚dc o l l 们l l e v e la r ei n 仃o d u c e di ng p c f o r e c a s t m o d e l ,r o l l i n go p t i n l i z a t i o na 1 1 df i e e d b a c k c o r r e c t i o na r et a k e na st h r e eb a s i cc h a r a c t e r i s t i c si ng p c w h i c h s h o w se x c e l l e n tc o m r o l p e r f o r m a n c ea n di sc o n s i d e r e da so n eo ft h e r e p r e s e n t a t i v ep r e d i c t i v ec o n 仃o l a l g o r i t h m s i ti sp a i dg r e a ta t t e n t i o nb yt h ea c a d e m i ca n de n g i n e e r i n g h o w e v e r , h e a 、7 o n - l i n e c o m p u t a t i o nb u r d e nw h i c hi sc a u s e db yc o m p u t i n gi n v e r s em a t 血i ng p c a l g o r i t h mi sn o ts u i t a b l ef o rr e a l - t i m ec o n t r o ls y s t e m b a s eo nal a r g en u m b e ro f d o m e s t i ca n df o r e i g nl i t e r a t u r e s ,g e n e r a l i z e dp r e d i c t i v ec o n t r o la l g o r i t h mi s s i i l l p l i f i e d i nt h i sp a p e r l o t so fs i m u l a t i o n sa n d e x p e r i m e n t a ls t u d i e sa r ed o n et ot y p i c a lm o d e i so f i n d u s t r i a lp r o c e s s ( 1 ) f a s tg e n e r a l i z e dp r e d i c t i v e c o n t r o la l g o r i t h mw i t hn o n o v e r s h 0 0 t i s p r o p o s e df o rac l a s so fs y s t e mr e q u i r e m e n tb a s e do ni n t e g r a t i n gs t a i r - l i k eg p ca n d v a r y m gt r e n do fc o n t r o li n c r e m e n t s t h eh e a v yo n - l i n e c o m p u t a t i o nb u r d e n f o r c o m p u t i n gr e v e r s em a t r i xi sa v o i d e db ys i n g l e v a l u e dg p ca n dc u r r e n ti n p u ti 1 1 c r e m e n t i sc o m p e n s a t e db yn e x t s t e pi n p mt oo v e r c o m ep o f e n t i a lo v e r s h o o t t h es t e p so ft h e a l g o r i t h mi sd e s c r i b e di nd e t a i l s i m u l a t i o nr e s u l t ss h o wt h ea l g o r i t h mh a s g o o dc o n t r 0 1 p e r l b r m a n c emr e s p o n s e s p e e d , a n t i i n t e r f e r e n c e ,r e s t r i c t i n g t h eo v e r s h o o ta n d r o b u s t n e s s ( 2 ) an e wo u t p u ti n c r e m e n tf e e d b a c kg p c w i t hm p u tc o n s t r a i n t si sp r o p o s e df o r r e a lc o n t r o ls y s t e mw i t hc o n s t r a i n t s t h e o p e r a t i o no fi n v e r s em a t r i xi sa v o i d e db y a p p r o x i m a t e l yc o m p u t i n gt h ef u t u r e c o n t r o li n c r e m e n ts e q u e n c eo f fl i n e s ot 1 1 a t 廿l e o n - l i n ec o m p u t a t i o nb u r d e ni s s t r o n g l yr e d u c e d m o r e o v e r , w i t hi n p u t sa n dt h e i r i n c r e m e n tc o n s t r a i n t s ,t h ea l g o r i t h mc a l lo b t a i nt h eo p t i m a lc o n t r o li n p u tb ya d j u s t i n g t h es e t - v a l u eo fm a x - o u t p u ti n c r e m e n ta n dg u a r a n t e e st h a to u t p u tc l o s et ot h es e t v a l u e o ft h ep l a n t s i m u l a t i o nr e s u l t ss h o wt h a tt h ep r o p o s e d a l g o r i t h mi se 妇f e c t i v e ( 3 ) a no u t p u ti n c r e m e n t f e e d b a c k p r e d i c t i v ec o n t r o li ss i i l l p l i f i e db y a p p r o x i m a t e l yc o m p u t i n g f u t u r e c o n t r o li n c r e m e n t s e q u e n c eo f fl i n ea 1 1 dn l e c o m p u t a t i o no fi n v e r s em a t r i xi sa v o i d e d t h em a x i m a lo u t p u ti n c r e m e n ti s a d j u s t e d 1 1 1 浙江理工大学硕士学位论文 o n l i n eb yn e u r a ln e t w o r kw h i c hg u a r a n t e e st h a to u t p u tc l o s et ot h es e t - v a l u eo ft h ep l a n t s i m u l a t i o nr e s u l t ss h o wt h a tt h ea l g o r i t h mp r o p o s e di se f f e c t i v e ( 4 ) a c c o r d i n g t oa l a r g et i m e d e l a ya n ds l o wt i m e - v a r i a t i o no b j e c t , a ni m p r o v e d g p c ( g e n e r a l i z e dp r e d i c t i v ec o n t r o la l g o r i t h m ) p o s s e s s i n gr e c t i f i e rf i l t e rf u n c t i o ni s p r o p o s e d ,w h i c hr e v i s et h em o d e lp r e d i c t i v eo u t p u t 谢t l la c t u a le r r o r , i n t e g r a t es t a i r - l i k e c o n t r o ll a wa n du t i l i z et h ev a r y i n gt r e n do fc o n t r o li n c r e m e n t sb a s e do nt h eg e n e r a l g p c aw a t e rt a n kf l u i dp o s i t i o nc o n t r o ls y s t e mi sd e s i g n e db yu s i n gk i n g v i e wa n dt h e a l g o r i t h mp r o p o s e di st e s t e d t h ee x p e r i m e n t a lr e s u l t si n d i c a t et h a t , c o m p a r e dt o g e n e r a lg p c ,t h ea l g o r i t h mp r o p o s e dh a sb e t t e rp e r f o r m a n c ei no v e r s h o o tr e s t r a i n t , a n t i i n t e r f e r e n c ea n dr o b u s t n e s s t h ep r o p o s e da l g o r i t h mi nt h i sp a p e rw a sd e r i v e dn o to n l yi nt h e o r y , b u ta l s o c a r r i e do u ti nal a r g en u m b e ro fs i m u l a t i o ne x p e r i m e n t sa n de x p e r i m e n t a lr e s e a r c h s w h i c hs h o wt h ee f f e c t i v e n e s so ft h ep r o p o s e da l g o r i t h m k 呵w o r d s :g a n e r a lp r e d i c t i v ec o n t r o l ;o v e r s h o o tr e s t r a i n t ;s i m p l i e dc o n t r o ll a w ; c o n s t r a i n t s i v 浙江理工大学硕士学位论文 目录 摘要i 目j 录1 第1 章绪论1 1 1 本课题的研究背景和意义 1 2 预测控制的基本类型 1 3 现代预测控制的研究动向 l 2 1 4 广义预测控制简化算法的研究现状。3 1 4 1g p c 的直接算法3 1 4 2g p c 自匀在线改进算法4 1 5 约束条件下的预测控制方法 1 6 论文的主要研究内容和结构 4 5 第2 章广义预测控制的基本算法7 2 1 广义预测控制模型和多步预测 2 2 多潘图方程的递推解 2 3 最优控制律的计算 7 8 9 2 4 广义预测控制算法中参数的选择1 0 2 4 1 预测时域长度尸lo 2 4 2 控制时域长度m 1 1 2 4 3 误差加权矩阵9 和控制加权矩阵五1 l 第3 章一种简化的广义预测控制算法12 3 1 引言1 2 3 2 一种快速无超调的预测控制方法1 2 3 2 1 广义预测模型及其基本原理1 2 3 2 2 抑制超调的快速预测改进算法1 3 3 2 3 仿真实验15 3 3 本章小结1 7 浙江理工大学硕士学位论文 第4 章约束条件下的广义预测控制算法18 4 1 引言 4 2 输出增量反馈预测控制算法的介绍 4 3 输入受限的输出增量反馈预测控制快速算法 4 4 仿真结果 4 5 本章小结 1 8 1 8 2 0 2 2 2 4 第5 章参数自整定的广义预测控制2 5 5 1 引言 2 5 2 5 2 6 5 2 输出增量反馈预测控制简化算法 5 3 基于b p 神经网络的最大输出增量自整定 5 4 仿真结果 5 5 本章小结 2 8 2 9 第6 章一种改进的广义预测控制算法在液位控制系统里的应用。3 0 6 1 引言 6 2 控制系统的结构 3 0 3 0 6 3 组态画面设计- :3 l 6 3 1 组态王软件介绍点:31 6 3 2 组态画面3 1 6 4 匕4 t l a b 与组态王之间的d d e 通信一3 3 6 4 1 动态数据交换( d d e ) 方式3 3 6 4 2d d e 的设置3 3 6 5 液位对象c , 4 r _ r 9 4 模型的建立3 4 6 5 1g p c 模型参数辨识3 4 6 5 2 数据预处理3 6 6 6 改进的广义预测控制算法 6 7 实验结果 6 8 本章小结 3 6 3 7 3 9 第7 章结论与展望4 0 参考文献。4 2 2 浙江理工大学硕士学位论文 _ _ _ - _ - 一一一 致谢4 7 攻读学位期间所取得的研究成果柏 浙江理工大学硕士学位论文 第1 章绪论 1 1 本课题的研究背景和意义 自二十世纪四十年代中期发展起来的经典控制理论主要是采用频率法对控制 系统进行描述、分析和设计,解决了许多控制问题,但对于解决大规模的复杂控 制问题仍远远不够。于六十年代初期发展起来了以状态空间分析( 时域法) 为基础 的现代控制理论,进一步提高了人们对被控对象的认识,为控制工程师在高层次 设计应用上提供了一种有效的手段。但是,随着计算和信息处理的能力的不断提 高,控制理论向着更复杂、更严密的方向发展,对大迟滞,复杂和不确定性系统 实行自动控制的要求不断提高。由于现代控制理论所采用的各种控制系统分析综 合方法都是在获得控制对象数学模型的基础上进行的,而控制实践中的许多复杂 的工业系统的数学模型很难被精确建立,而且工业对象的结构和参数往往具有一 定的不确定性,因此,应用经典控制理论和现代控制理论对工业对象进行控制时 难以达到期望的控制指标,其局限性日益明显。所以,在理论和实际应用之间不 协调的情况下,除了进一步进行系统辨识,自适应控制,鲁棒控制等研究外,人 们开始从新的角度去研究,试图根据工业过程的特点,找到一种对模型要求低, 计算量小,综合控制效果好,能进行实时控制的控制理论和算法。同时计算机科 学和技术的快速发展使大容量,低成本的工业控制计算机更加广泛地应用到实际 控制当中,为新算法的实现提供了基础。预测控制就是在这种背景下,为了满足 工业过程控制而发展起来的一类新型计算机控制算法。预测控制对对象模型的要 求不同于其他传统的控制方法,它强调的是模型的功能而不是模型的结构,只要 模型可利用过去已知数据信息预测系统未来的输出行为,就可以作为预测模型。 所以,预测模型不仅可以选取状态方程、传递函数这类传统的模型,也可以选取 在实际工业过程中较易获得的脉冲响应模型或阶跃响应模型,以及易于在线辨识 的能描述不稳定系统的翻删模型和翻朋黝模型作为预测模型。 广义预测控制技术最初由c _ l a r k e 和其合作者提出,它采用传统的参数模型( 如 c a r i m a 模型) ,参数的数目较少,对于过程参数慢时变的系统,易于在线估计参数。 此外,它还引入不固定的预测水平和控制水平,便于灵活设计系统,控制性能优 良,具有预测模型、滚动优化和反馈校正三个基本特征,是最具有代表性的预测 浙江理工大学硕士学位论文 控制算法之一1 1 堋。它采用的多步预测方式,预测了过程的未来变化趋势,能有效 地克服系统的不确定性和各种复杂变化的影响,具有较强的鲁棒性,受到学术界 和工程界的注意和重视,并被广泛应用于过程工业中。但是基本的广义预测控制 需要进行矩阵求逆运算,计算量很大,不适合要求快速响应的实时控制系统。本 文在参考大量国内外文献的基础上,对广义预测控制算法进行了简化研究,提出 快速广义预测控制算法,减少了计算量,便于实时控制,为实际应用打下了基础。 1 2 预测控制的基本类型 预测控制经过多年的发展,算法的种类已经相当繁多。按照其基本的结构模 式,预测控制的基本类型可以分为以下几种: ( 1 ) 采样基于脉冲响应或阶跃响应的非参数模型作为预测模型的预测控制算 法,如m a c 、d m c 等。这类非参数模型建模相当方便,只要通过受控对象脉冲响 应或阶跃响应测试即可得到,因而无需考虑模型的结构与阶次,且纯滞后必然包 括在响应值中,特别适合表示动态响应不规则的受控对象特性。由于具有这次优 点,商品化的预测控制软件大多采用这类非线性模型,如s e t p o i n t 公司的i d c o m 软件包等。但其只适用于开环自稳定对象,且模型参数多时,控制算法计算量大。 ( 2 ) 基于辨识过程参数模型,且带自校正机制,在线修正模型参数的预测控 制算法,如广义预测控制( g p c ) ,广义预测极点配置控制( g 尸尸) 等。这类控制 算法是在广义最小方差控制的基础上,吸取预测控制中多步预测,滚动优化思想 而产生的。其预测模型是采用具有一定结构和参数的离散受控自回归积分滑动模 型( c a r i m a ) ,或受控自回归滑动平均模型( c a r m a ) ,需要确定的参数远较非 参数模型的少,减少了预测控制算法的计算量。 ( 3 ) 基于结构设计不同的另一类预测控制算法,如内模控制,推理控制和基 于状态空间的模型等。这类算法是从结构上研究预测控制的一个独特分支。 1 3 现代预测控制的研究动向 随着近年来预测控制的进一步发展,开始与鲁棒控制,精确线性化,解耦控 制和非线性控制等先进控制策略相结合,出现了一类先进预测控制算法,如前馈 补偿预测控制,自适应预测控制,解耦预测控制,鲁棒预测控制等。随着智能控 制技术的发展,预测控制也与智能控制相结合,出现了智能预测控制算法。它主 要针对复杂的受控系统,弥补了单纯预测控制算法在性能上精度不高,仅适用于 2 浙江理工大学硕士学位论文 线性系统,缺乏自学习、自组织功能,鲁棒性不强的缺陷,提高了控制性能。这 类智能预测主要有模糊预测控制,神经网络预测控制,专家系统预测控制等。 除了上述的先进预测控制和智能预测控制之外,在预测控制系统的研究中, 还出现了多种新型的预测控制,如预测函数控制,多速率采样预测控制,多模型 切换预测控制,有约束预测控制等。 1 4 广义预测控制简化算法的研究现状 与八十年代相比,广义预测控制已有了巨大的进展,人们对已有的广义预测控 制算法做了性能上的改进,得到很多的成果,如:导出递推算法1 5 1 ,把单变量的算法 推广到多变量的算法1 6 i ,修正或采用新的目标函数1 7 1 ,采用其他的数学预测模型等 h 】。为了减小广义预测控制的计算量,很多专家和学者做了大量研究,取得了不少 成果。概括起来,其中主要有两种思想方法,一种是通过直接估算广义预测控制 器参数的直接算法,另一种是在广义预测控制算法中,通过简化d i o p h a n t i n e 方程 的求解或逆矩阵的求解来减少计算量的在线算法改进。 1 4 1g p c 的直接算法 文 8 提出种被控对象的阶跃响应前顺已知的直接算法,并分析了算法的 : 全局收敛性;文 9 采用带死区的参数估计方法估算出控制器参数;文 1 0 采用等 价性能指标,首先辨识被控对象的参数,计算出广义输出,然后利用改进的最d , - 乘法估计控制器的参数;文 1 1 根据求性能指标的等值曲面,对幅度和变化率受 约束的优化问题进行了分析并提出了一种基于几何分析的约束直接g p c 算法;文 1 2 采用三个辨识器,在分析了被控对象的开环参数、闭环参数和控制器参数三 者之间的关系的基础上,利用通过辨识得到的开环系统的参数来递推计算系统的 预测输出和参考轨迹,然后辨识闭环系统计算得到系统的广义输出,最后再辨识 控制器的参数;文 1 3 把被控对象视为灰色模型,采用两个辨识器分别辨识被控 对象和闭环系统的参数,从而得到了控制器的参数;文 1 4 利用过程模型直接递 推,把广义预测控制律表达成控制器系数与参考轨迹及过程历史信息乘积的形式, 其控制器系数计算只与模型参数及设计参数有关,避免了在线求解d i o p h a n t i n e 方 程、输出预测表达式及自由响应项,简化了设计思路,减少了在线运算量;文 1 5 利用过程模型直接递推,提出了对角c a r i n a 模型多变量广义预测控制器系数的直 3 浙江理工大学硕士学位论文 接求解方法。 1 4 2g p c 的在线改进算法 文 1 6 采用递推的方法建立预测模型,避免了求解d i o p h a n t y n e 方程,且算法 不受多项式稳定的限制;文 1 7 给出了依据待求逆矩阵中元素排列特殊性的逆矩 阵递推求解算方法,大大减少了计算量,仅为一般的增广矩阵法的3 0 ;文 1 6 把 特殊的下三角加权矩阵引入到性能指标函数中,得到了避免求解逆矩阵的算法, 但加权下三角矩阵的选择有一定的条件;文 1 8 给出了通过并行结构分解方法来 求解的计算算法,提高了在线计算效率;文 1 9 利用反向递推方法对广义预测的 准则函数进行变换,提出一种递推的快速g p c 算法,不需求解d j o p h a n t i n e : :5 程, 也不需要求逆矩阵,大大节省了计算量;文 3 提出了单值广义预测控制,避免了 矩阵的求逆运算;文 2 0 通过对控制输入进行柔化和滤波处理,减少了计算离。 同时引进广义跟踪误差,保证了稳定性;文 2 1 通过对未来的控制序列的离线近 似计算,而只精确求解当前时刻要实施的控制量,提出了一种广义预测控制的快 速算法,避免了d i o p h a n t i n e 方程和逆矩阵的求解;文 2 2 把文 2 1 的方法推广到 了多变量系统;文 2 3 2 4 引入阶梯控制的思想,限制控制增量的变化大小,把 逆矩阵运算转化为除法运算,从而减少计算量。文 2 5 在雠则函数中引入输出 。期望值,推导出适于跟踪问题的快速广义预测控制算法,该算法可适用于开环不 稳定非最小相位系统,具有良好的抑制干扰能力,比传统的麒有更快的计算速 度。还有其他许多学者也对如何简化广义预测控制算法作了研究1 2 6 j o 。 此外,另有学者提出了迭代预测控制算法1 3 1 1 ,预测函数控制算法1 4 l 等计算量小 的预测控制方法。这些算法都是从减少计算量的角度来改进算法,以进步满足 实时控制的需要。 1 5 约束条件下的预测控制方法 在许多实际的过程控制中,系统的输入或状态常常受物理条件的制约( 一般 称为硬约束) 或为了保证系统的闭环稳定性,人为地在系统的终端施加约束。常 见的约束有输入输出变量的幅值约束、速率约束、加速度约束等。输入条件的引 入使控制算法更加复杂。所以许多学者对约束条件下的广义预测控制进行了研究 1 3 2 - 3 8 1 。如文 3 9 采用引入加权多项式的性能指标,使性能指标取最小值时得到的 4 浙江理工大学硕士学位论文 当前控制量与将来的控制无关,并给出了处理输入受限问题的方法;文 4 0 限定 了系统的闭环极点范围,并在此约束下推导了g p c 算法使控制系统的鲁棒性得到加 强;文 4 1 通过只精确计算当前时刻的控制作用,而对未来时刻的控制序列进行 离线近似计算,提出了一种输入受限的广义预测控制快速算法;文 4 2 把预测控 制中的柔化输出信号的方法直接推广到柔化输入信号,简化了约束条件,避免了 非线性搜索求解非线性规划问题,同时大大减少了计算量;文 4 3 引入了模糊目标 和模糊约束,把等式约束和不等式约束统一为模糊软约束,约束预测控制就转化 为标准的模糊优化问题,用一组不精确的满意优化解取代了传统的唯一最优解。 文 4 4 3 以一步优化代替对控制量的多步优化,根据约束和状态预测值确定满足条 件的加权系数的范围,在此范围内在线调整加权系数,保证了系统的状态始终满 足给定的约束条件。 在广大学者的努力下,广义预测简化算法的研究已有了很大的进展,大大减 少了计算量,为在实时控制系统中的应用打下了基础。 1 6 论文的主要研究内容和结构 本文针对基本广义预测控制计算量大的缺点,以及实际控制过程中常遇到的 约束和参数调整问题,提出改进的预测控制算法,减少了计算量,提高了控制系 统的动态性能,具体的研究工作如下: 第一章:绪论。对课题的研究背景和意义、研究现状以及本课题所完成的主 要工作进行简要介绍。 第二章:广义预测控制的基本算法。详细介绍了基本广义预测控制算法的原 理及推导过程,并进行简要地分析。 第三章:一种简化的广义预测控制方法。引入阶梯控制,提出一种利用预测 信息的抑制超调的广义预测简化算法,并进行仿真研究。 第四章:一种约束条件下的广义预测控制方法。提出一种带输入约束的输出 增量反馈预测控制算法,并进行仿真研究。 第五章:一种参数自整定的广义预测控制方法。提出一种基于神经网络参数 自整定的预测控制方法,并进行仿真研究。 第六章:一种改进的广义预测控制算法的应用研究。设计了一个基于组态王 的液位控制系统,提出一种改进的广义预测控制方法,并进行实验研究。 浙江理工大学硕士学位论文 第七章:结论与展望。介绍本论文研究过程中得出的重要结论及对本课题的 展望。 6 浙江理工大学硕士学位论文 第2 章广义预测控制的基本算法 2 1 广义预测控制模型和多步预测 广义预测控制仍然保留了基于非参数模型的m a c 和d k l c 等预测控制算法的预 测模型,滚动优化和反馈校正等三个基本特征,不过这里采用的是具有一定结构 和参数的离散受控自回归积分滑动平均模型( c a r i a i f l ) ,或受控自回归滑动积分模 型( c a p d 纠) 。其中离散受控自回归积分滑动平均模型n 1 可以描述为: 彳( z 一1 b ) = b g 一1 - 忙一1 ) + c ( z 一1 磐 ) 2 一( 1 ) 式中 y , u 和 善 分别为系统输出,输入和零均值噪声序列;= 1 一z - 1 为差分算 子; 彳g 一) = 1 + 兰口j z 一; b ( z 一,) = n b6 ,z 一; c g q ) = l + 妻印一,。 这里假定系统时延d = l ,若痧1 ,则只需令b g 一1 ) 多项式中的前d 一1 项为零即 可。为了易于突出本质问题和简化计算,令c ( z - 一) = 1 。 : 对式2 一( 1 ) 作简单的数学处理后,等式两边都乘以差分算芋可以得到: j g 一1 涉 ) = b g 一1 ) 材 一1 ) + f ) 2 一( 2 a ) 式中 式中j ( z 一) :么( z 一,) :1 + n a + i 而一, 2 一( 2 b ) 为了进行前向多步预测,需引入多潘图方程 1 = 孔一1 江,+ z - j s ,( z - 1 ) 2 一( 3 a ) 用r ,g 一1 ) 乘以2 一( 2 a ) 有: e ( z - 1 ) = 1 + 艺够一 墨( z 一- ) = t 一,2 7 2 一( 3 b ) 2 一( 3 c ) 浙江理工大学硕士学位论文 j g - 1 皿,g 一1 涉 ) = b g 一1 沁,g 一1 ) 甜 一1 ) + r ,g 一1 垮 ) 再将2 一( 3 a ) 代入上式,可以得到 j , + ,) = 否,g 一1 ) 甜 + 歹一1 ) + ( z 一1 b ) + 髟( z 一1 浩陆+ ,) 2 一( 4 a ) 式中 一g ,( z 一1 ) = r ,( z 一1 归( z 一1 ) 2 一( 4 b ) 上式右边前两项与第三项不相关,第三项为预测误差,因此第尼+ - 步导前最 优预测为: y p ( + ,) 死) = 否,( z ) 5 u ( k + j 1 ) + s ,( z 一1 伍) 2 一( 4 c ) 式中j = l ,2 ,尸尸为最大预测步数。 2 2 多潘图方程的递推解 对于j + 1 步预测,e h 多潘图方程2 _ ( 3 a ) 有 1 = j ( z 一1 皿,+ 。( z 一1 ) + z o + 1 j s ,+ 。( z 一1 ) 2 一( 3 d ) 式中 r j + 1 ( z q ) = l + 圭厂。 把式2 一( 3 d ) 与式2 一( 3 a ) 做差可以得到: j x r 川) 一只,) ) + z 一,s 川( z 一1 ) 一s ) ) = o 2 一( 5 ) r j + i 蚪舻) 2 羽z - - j b ”z 一啪一) 】 从上式可以看出,等式右边小于次的所有低次幂项均为零,因此r 川( z 一1 ) 和 r g 一1 ) 的前歹一1 项的系数必须是相等的,有 于是有: 0 ,= - + l ,= o = o ,1 ,2 ,j - ) 2 一( 6 a ) 尺,卅( z 一1 ) = r c z 一1 ) + o q ,z 一- 2 一( 6 b ) 将上式代入式2 一( 5 ) 有 s j + ,( z 一1 ) = z b ,) 一,:,+ 1 ,j ( z - 】) j 为了求出r s g 一1 ) 、q ( z 一1 ) 的递推解,将上式展开有: 8 浙江理工大学硕士学位论文 j ,“,。+ s + 1 ,l z l + + s + l ,z 一 = z 各,。+ j z - l + + s ,z 一一r j + 1 j1 + a l z - i + 乙:z 一2 + + a n a + l z - ( 卅) b 一,g ,。一o h ) + g ,j 一云,o 稍,21 + ( s ,:一二:o q ) z 之+ 一l + g ,。一r j + l 一b 吨_ 卅,砧l z 也“) i l - + b ,一, j a 弦吨一o “,j 口h + l z 一“ i 令上式两边同幂次项系数相等,于是有 0 哪= s 加= s _ ,( o ) s j 札,02s j 。1 一n 1 s j 。0 s j 啦。12s j 3 一a 2 s j ,o 2 一( 6 c ) s j + l ,f = s + 1 一a i + l s j ,o( 0 i ,z 。) 2 一( 6 d ) : s j + l ,l 。= 一s j ,oa n 。+ l 由式2 一( 6 c ) 和式2 一( 6 百) 即可递推得到r ,g 一1 ) 、巴g 一1 ) 。 递推所需要的初值为由j = l 时的多潘图方程解出: 彳g 一江,( z 。1 ) + z - i s 。g 。1 ) = 1 可以得到: : 蜀g 一1 ) = r o = 1 s l = z b j ) 】 2 3 最优控制律的计算 2 一( 6 e ) 2 一( 7 ) 广义预测控制采用对输出误差和控制增量加权的二次型性能指标为: ,p = e 陲g 从后刊叶( 后+ 州2 + m 乃 + ) 】2 2 - ( 8 ) 式中p 为最大预测长度,一般大于b g - 1 ) 的阶次;l 为最小预测长度,等于已知 时延大小;m 为控制时域长度:q ,乃为预测误差和控制增量加权系数;” + 歹) 为输入参考轨迹,选用一阶滤波方程: y r + ) = a y ,( 七+ 一1 ) + ( 1 一口如 y r ( 后) = y ( k )2 一( 9 ) 式中j = l 2 ,p ,彩为输出设定值,口【0 ,1 】。 把2 一( 8 ) 写成矩阵形式,有: 浙江理工大学硕士学位论文 式中 式中 ,= e 陟 + 1 ) 一 + 1 ) 】7 q 口 + 1 ) 一e + 1 ) 】+ u 7 伍) 怂u ) 2 一( 1 0 ) y ( 七十1 ) = 陟 + 1 ) ,y ( 七+ 2 ) ,y ( 尼十尸) 】r e ( 七+ 1 ) = 陟,( 露+ 1 ) ,y ,( 七十p ) 】7 u ( 七) = a u ( k i ,a u ( k + m 一1 汗 q = d i a g ( q 1 ,9 2 ,q 尸) 力= 豫( 五,五,九) 把式2 一( 1 0 ) 对未来控制增量u ( 七) 求导,并令其为零,即得最优控制律: a u ( k ) = ( g r q g + 2 ) - 1 g7 q k ( | j + 1 ) 一f o a u ( k 一1 ) 一s ( z 。1 b ( 七) 】 2 一( 1 1 ) z x u ( k 一1 ) = 必以( 后一玎。) ,a u ( k 一1 ) 】r g = e = g l ,0 9 2 ,i g l ,0 gp p - 、gp q 。p 一2 gp m n ,m g l ,g l 机- 1 g l ,0 9 2 ,他“9 2 ,g l ,1 通常我们只取u ) 中的当前控制增量甜 ) 这一步来进行控制。 缸( 尼) = f x a u ( k ) 2 一( 1 2 ) 式中f = 【l ,o ,o 】州。 这样由式2 一( 1 2 ) 就可以得到当前控制量: “( j i ) = u ( k 一1 ) + “( 尼) 2 一( 1 3 ) 2 4 广义预测控制算法中参数的选择 预测控制算法由于采用了多步预测、滚动优化和反馈校正等控制策略,扩大 了反映系统动态行为的有用信息,提高了系统运行的稳定性和鲁棒性,但同时也 使控制系统的参数如预测时域p 和控制时域m 等隐含在控制算法当中,不易直接 考察它们的取值对控制性能的影响,只能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论