二元一次方程组的解法.doc_第1页
二元一次方程组的解法.doc_第2页
二元一次方程组的解法.doc_第3页
二元一次方程组的解法.doc_第4页
二元一次方程组的解法.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程组的解法一、目标认知学习目标:1了解二元一次方程、二元一次方程组及其解的含义;2会检验一组数是不是某个二元一次方程组的解;3会用代入法和加减法解二元一次方程组,了解代入消元法和加减消元法的基本思想;4能够根据题目特点熟练选用代入法或加减法解二元一次方程组;5能借助二元一次方程组解决一些实际问题,使用代数方法去反应现实生活中的等量关系,体会代数方法的优越性.重点:二元一次方程组的解法.难点:熟练运用代入法和加减法解二元一次方程组.二、知识要点梳理知识点一:二元一次方程的概念含有两个未知数(一般设为x、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 如xy24,都是二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. 如xy的次数是2,所以方程6xy90不是二元一次方程.(3)二元一次方程的左边和右边都必须是整式. 如方程的左边不是整式,所以它就不是二元一次方程.(4)判断某个方程是不是二元一次方程,一般先把它化为axbyc0的形式,再根据定义判断,例如:2x4y32x不是二元一次方程,因为通过移项,原方程变为4y3,不符合二元一次方程的形式。知识点二:二元一次方程的解能使二元一次方程左右两边的值都相等的两个未知数的值,叫做二元一次方程的解。由于使二元一次方程的左右两边相等的未知数的值不只一个,故每个二元一次方程都有无数组解。如,都是二元一次方程xy3的解,我们把有无数组解的这样的方程又称之为不定方程。要点诠释:(1)使二元一次方程左右两边都相等的两个未知数的值(二元一次方程的每一个解,都是一对数值,而不是一个数值),即二元一次方程的解都要用“”联立起来,如,是二元一次方程xy2的解。(2)在二元一次方程的无数个解中,两个未知数的值是相互联系、一一对应的。即其中一个未知数的值确定后,另一个未知数的值也随之确定并且唯一。知识点三:二元一次方程组的概念把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 例如, 都是二元一次方程组.此外,组成方程组的各个方程也不必同时含有两个未知数.例如 也是二元一次方程组.知识点四:二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组的解要用大括号联立,如 ,而不能表示成x9,y4.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个.(3)检验一组数是否是二元一次方程组的解时,一定要将这一组数代入方程组中的每一个方程,看是否满足每一个方程,只有这组数满足方程组中的所有方程时,该组数才是原方程组的解,否则不是。知识点五:消元法1消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2消元的基本思路:未知数由多变少.3消元的基本方法:把二元一次方程组转化为一元一次方程.知识点六:代入消元法1代入消元法是解方程组的两种基本方法之一。代入消元法就是把方程组其中一个方程的某个未知数用含另一个未知数的代数式表示,然后代入另一个方程,消去一个未知数,将二元一次方程组转化为一元一次方程来解。这种解二元一次方程组的方法叫代入消元法,简称代入法。2用代入法解二元一次方程组的一般步骤:(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示;(2)将变形后的这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)将求得的这个未知数的值代入变形后的关系式中,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“”联立起来写成方程组的解的形式.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法。如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法。整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率。知识点七:加减消元法1加减消元法是解二元一次方程组的基本方法之一,加减消元法是通过将两个方程相加(或相减)消去一个未知数,将二元一次方程组转化为一元一次方程来解,这种解法叫做加减消元法,简称加减法。2用加减法解二元一次方程组的一般步骤:(1)方程组中的两个方程,如果同一个未知数的系数既不互为相反数又不相等,就可用适当的数去乘一个方程或两个方程的两边,使两个方程中的某一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加减(相同时相减,相反时相加),消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得其中一个未知数的值;(4)把所求得的这个未知数的值代入到原方程组中系数比较简单的一个方程,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“”联立起来写成方程组的解的形式。要点诠释:一般地,加减消元法的选择方法是:(1)选择系数绝对值较小的未知数消元;(2)某一未知数绝对值相等,如果符号不同,用加法消元,如果符号相同,用减法消元;(3)某一未知数系数成倍数关系时,直接对其中一个方程变形,使其系数绝对值相等,再运用加减法消元;(4)当相同的未知数的系数都不相等时,找出某一个未知数的最小公倍数,同时对两个方程进行变形,转化为绝对值相同的系数,再用加减法来解。用加减法解方程组时需注意:对某个方程变形处理时各项都要扩大相同的倍数;两个方程的左右两边的各项都要同时相加或相减。三、规律方法指导1二元一次方程的整数解的求法:一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示另一个未知数,然后根据条件逐一求出相应的解.2判断二元一次方程组的方法:把具有相同未知数的两个二元一次方程合在一起就组成一个二元一次方程组,判断一个方程是不是二元一次方程组,就看它是否满足以下两个条件:(1)看整个方程组里含有的未知数是不是两个;(2)看含未知数的项的次数是不是1.3检验一对数是不是某个二元一次方程组的解,常用的方法是:将这对数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解;否则,如果这对数值不满足其中的任何一个方程,那么它就不是此方程组的解.4运用代入法、加减法解二元一次方程组要注意的问题:(1)当方程组中含有一个未知数表示另一个未知数的代数式时,用代入法比较简单;(2)若方程组中未知数的系数为1(或1),选择系数为1(或1)的方程进行变形,用代入法比较简便;(3)当方程组中的两个方程有某个未知数的系数相同或相反时,进行加减消元比较方便;(4)若两个方程中,同一个未知数的系数成倍数关系,利用等式性质,可以转化成(3)的类型,选择加减消元法比较简便;(5)若两个方程中,同一个未知数的系数的绝对值都不相等,那么,应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元;(6)对于比较复杂的二元一次方程组,应先化简(去分母、去括号、合并同类项等). 通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作加减消元的考虑.经典例题透析类型一:求二元一次方程的解1写出二元一次方程4xy20的所有正整数解.思路点拨:要把4xy20变形,再根据代数式的特点求解.解析:由原方程得y204x.因为x、y都是正整数,所以当x1,2,3,4时,y16,12,8,4.所以方程4xy20的所有正整数解为:, , , .总结升华:(1)可以把二元一次方程中的一个未知数看成已知数,先解关于另一个未知数的一元一次方程,然后两个未知数取正整数值即可.(2)对题意理解,要注意两点:要正确;不重、不漏. 两个未知数的取值均为正整数才符合题意的解.举一反三:【变式1】在方程3x4y20中,若y分别取2、0、1、4,求相应的的值.【答案】将3x4y20变形得.把已知y值依次代入方程的右边,计算相应值,如下表:2014226 【变式2】求二元一次方程2xy9在自然数范围内的解。思路点拨:首先明确自然数的概念,自然数是指0,1,2, 3,也就是非负整数,最小的自然数是0。再把二元一次方程变形,用一个未知数表示另一个未知数,可变为y92x,这样再让未知数x按顺序0,1,2,3,取值,即可获得所求的自然数范围内的解。解析:原方程变形为y92x当x0时,y9,当x1时,y7,当x2时,y5当x3时,y3,当x4时,y1,当x5时,y1所以方程在自然数范围内的解为,。类型二:确定方程的待定系数2若是关于的二元一次方程,求的值.思路点拨:根据二元一次方程的定义,a30,即a3;|a|21,即a3,所以a3.解析:由题意得|a|21,所以a3. 而a30,即a3,所以a3.总结升华:二元一次方程的待定系数的求解,要同时考虑两个未知数的系数与次数,不管方程的形式如何变化,必须满足含有两个未知数,未知数的次数是1,这两个条件.举一反三:【变式1】如果是方程组的解,求a20092b2009的值.思路点拨:把代入方程组,可以得到关于a、b的方程组,解这个方程组,可得a、b的值.解析:由是方程组的解,得.解这个方程组,得,当时, a20092b2009120092120091.总结升华:把x、y的值代入方程组,转化为关于a、b的方程组,解出a、b的值. 本题体现了“系数”与“未知数”的转化关系.【变式2】方程2xm13y2n5是二元一次方程,则m_,n_.【答案】0,解析:由方程是二元一次方程得:m11,2n1,解得:m0,n。【变式3】若是方程组的解,则a_,b_.【答案】a2,b1解析:把代入原方程得。3已知方程组与方程组的解相同,求的值.思路点拨:因为两个方程组的解相同,所以可先求出方程组的解,然后把此解代入方程组中,得到关于a、b的二元一次方程组,解这个方程组,即可导出a、b的值.解析:解方程组,得. 把代入方程组,得,解这个方程组,得 .总结升华:由于此题的解题步骤较多,所以解方程组的过程可以省略.举一反三:【变式1】已知方程组与方程组的解相同,求a、b的值.解析:由方程3xy5与4x7y1组成方程组,之后解题过程见例3,求出x、y的值,代入方程组,再求出a、b的值,得 .【变式2】若等式中的x、y满足方程组,求mn的值。解析:由2x40,y0,得,把代入方程组得解得:把代入2m2n得原式23218。类型三:二元一次方程组的求法4解方程组 .思路点拨:根据方程组的特点,可以选用不同的方法来解.解析:方法一:原方程组化简得由得,y365x. 把代入,得x5(365x)24,解得x6. 把x6代入,得y36566.所以原方程组的解是 .方法二:原方程组化简得5,得25x5y180. ,得26x156,解得x6. 把x6代入,得y6.所以原方程组的解是 .方法三:原方程组化简得3,得9(xy)6(xy)108. 2,得4(xy)6(xy)48. ,得13(xy)156,解得xy12.把xy12代入,解得xy0. 解方程组 ,得 .所以原方程组的解是 .总结升华:(1)方法一和方法二都利用了二元一次方程组的常规解法:代入法和加减法;方法三根据题目的特点应用了整体的思想方法先求出xy和xy的值,再进一步求x、y的值,这是解方程(组)的一种重要的思想.(2)解方程组时,不要急于求解,要先观察特点,因题而异,灵活选择方法,才能事半功倍. 同时,注意一题多解,训练思维的敏捷性和解题的灵活性.举一反三:【变式1】已知方程组 ,求xyz的值.思路点拨:这是个三元一次方程组,只含有两个方程,一般不能分别求出x、y、z的值,可把“xyz”作为一个整体,把方程组变形,根据特殊性求解.解析:将原方程组整理,得3,得6(x3y)3(xyz)21,2,得6(x3y)2(xyz)16,得xyz5.【变式2】解方程组解:由,得5x53y85300,即5(xy)48y85300.将代入,得530048y85300。解得y500.将y500代入,得x200.所以原方程组的解是.【变式3】解方程组解:设,则原方程组可化为解得,即,解得。类型四: 实践应用题5直角三角形ABC中,C90,两个锐角的差是30,求两个锐角的度数.思路点拨:许多几何中的问题,如边、角问题,可通过设未知数来列方程组,使几何问题中的量的关系变得更直接、更易懂.解析:设两个锐角的度数分别是x和y,根据题意列方程组为 ,解方程组,得 . 所以两个锐角的度数分别是60和30.总结升华:列简单的二元一次方程组时应先设未知数,然后列出含有未知数的两个方程,再用大括号联立,组成二元一次方程组.举一反三:【变式1】美术小组的同学分铅笔若干支,若其中4人每人各取4支,其余的人每人各取3支,则还剩16支;若有1人只取2支,则其余的人恰好每人各得6支,问美术小组的同学有多少人?铅笔有多少支?解析:设美术小组有名同学,有支铅笔,根据题意,得,解方程组,得 .答:美术小组有8名同学,44支铅笔.【变式2】(宁德中考)某刊物报道:“2008年12月15日,两岸海上直航、空中直航和直接通邮启动,大三通基本实现大三通最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次解析:设每年采用空运往来的有x万人次,海运往来的有y万人次,依题意得 解得答:每年采用空运往来的有450万人次,海运往来的有50万人次6小明做拼图游戏时发现:8个一样大小的小长方形恰好可以拼成一个大的长方形,如图1所示. 小丽看见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论