非欧几何诞生的意义.doc_第1页
非欧几何诞生的意义.doc_第2页
非欧几何诞生的意义.doc_第3页
非欧几何诞生的意义.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。出现动钟延缓,动尺缩短,时空弯曲等现象。这些都是非欧几何与相对论 的科学发现。 它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。 Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。出现动钟延缓,动尺缩短,时空弯曲等现象。这些都是非欧几何与相对论 的科学发现。 它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。 Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。出现动钟延缓,动尺缩短,时空弯曲等现象。这些都是非欧几何与相对论 的科学发现。 它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。 Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。出现动钟延缓,动尺缩短,时空弯曲等现象。这些都是非欧几何与相对论 的科学发现。 它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。 Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。出现动钟延缓,动尺缩短,时空弯曲等现象。这些都是非欧几何与相对论 的科学发现。 它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。 Non-Euclidean geometry 非欧几里得几何是一门大的数学分支,一般来讲 ,它有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。1、解决了平行公理的独立性问题。推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。 2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。实际上公理化的研究又孕育了元数学的产生和发展。 3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。非欧几何与相对论和汇合是科学史上划时代的事件。人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论