神奇的莫比乌斯圈.doc_第1页
神奇的莫比乌斯圈.doc_第2页
神奇的莫比乌斯圈.doc_第3页
神奇的莫比乌斯圈.doc_第4页
神奇的莫比乌斯圈.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

_神奇的莫比乌斯圈一、引入课题:两个剪纸游戏1、游戏一:你能把一张纸剪成两张吗?找一张旧报纸,用剪刀把报纸剪出一张5厘米宽的纸条,把纸条的一头翻个面,然后和另一头粘在一起,形成一个扭曲的纸圈。沿着5厘米宽的纸圈的中心线把纸圈剪开,你能剪出两个纸圈吗? 剪完一圈,你会发现纸圈还是一个,不过比原纸圈长了一倍。这种扭曲的纸圈有一个奇妙的特点,它只有一个面,也就是没有正反面,这种纸圈在拓扑学上叫莫比乌斯圈。 如果我们再剪一次,会发生什么事情呢?现在这个纸环已经是不是单侧曲面了,所以剪开以后应该至少出现两个环。问题是,那会是怎么样的两个环呢?结果是两个和刚才一样的纸环,不过这两个纸环是套在一起的。2、游戏二:换个地方剪,你能剪出和上面一样的纸圈吗?还是按上面说过的方法做一个摩比乌斯圈,用剪刀从靠纸边上三分之一的地方剪开。从头剪到尾,一直保持离纸边相同的距离。 这样剪的结果会是一个比原纸圈长一倍的纸圈和一个与原纸圈同样大的纸圈套在一起,真是有意思极了,这一点你恐怕没有想到吧。二、莫比乌斯圈 1、简介公元1858年,德国数学家莫比乌斯(Mobius,17901868)和约翰李斯丁发现:把一根纸条扭转180后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯圈”。2、发现 数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。 莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”莫比乌斯圈就这样被发现了。 3、相关结论 做几个简单的实验,就会发现“莫比乌斯圈”有许多让我们感到惊奇而有趣的结果。实验一 : 如果在裁好的一张纸条正中间画一条线,粘成“莫比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。 实验二: 如果在纸条上划两条线,把纸条三等分,再粘成“莫比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带一分为二,一大一小的相扣环。 奇妙之处有三: 莫比乌斯环只存在一个面。 如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的麦比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个麦比乌斯环或两个其它形式的环。 如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 4、应用 数学中有一个重要分支叫拓扑学,主要是研究几何图形连续改变形状时的一些特征和规律的,麦比乌斯圈变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。 一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀地承受磨损,避免了普通传送带单面受损的情况,使得其寿命延长了整整一倍。 二、针式打印机靠打印针击打色带在纸上留下一个一个的墨点,为充分利用色带的全部表面,色带也常被设计成麦比乌斯圈。 三、在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞车它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。 四、莫比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被用于各类标志设计。微处理器厂商PowerArchitecture的商标就是一条麦比乌斯圈,甚至垃圾回收标志也是由莫比乌斯圈设计的。5、小故事:莫比乌斯带”有点神秘,一时又派不上用场,但是人们还是根据它的特性编出了一些故事,据说有一个小偷偷了一位很老实农民的东西,并被当场捕获,将小偷送到县衙,县官发现小偷正是自己的儿子。于是在一张纸条的正面写上:小偷应当放掉,而在纸的反面写了:农民应当关押。县官将纸条交给执事官由他去办理。聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。县官听了大怒,责问执事官。执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。 县官知道执事官在纸条上做了手脚,怀恨在心,就想伺机报复。一日,又拿了一张纸条,要执事官一笔将正反两面涂成黑色,否则就要将其拘役。只见执事官不慌不忙地把纸条扭了一下,然后粘住两端,提笔在纸环上一划,又拆开两端。只见纸条额正反面均涂上了黑色。于是,县官的毒计又落空了 。现实可能根本不会发生这样的故事,但是这个故事却很好地反映出“莫比乌斯圈”的特点。三、课后思考: 我们发现在折纸带时翻转180得到莫比乌斯带,从中逢剪开得到一个大环。1、若是翻转360,得到的是什么呢?(不是莫比乌斯带,从中逢剪

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论