(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf_第1页
(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf_第2页
(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf_第3页
(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf_第4页
(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf_第5页
已阅读5页,还剩72页未读 继续免费阅读

(电力系统及其自动化专业论文)基于支路暂态势能分析的重合闸技术研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

a b s t r a c t w i t ht h eg r o w i n gs t r e s so nt o d a y sp o w e rs y s t e md u et oi n t e r c o n n e c t e de l e c t r i c t r a n s m i s s i o ns y s t e m sa n do p e na c c e s sc o m p e t i t i v ee l e c t r i c i t ym a r k e t s ,m a n yu t i l i t i e s a r eu n d e rt h et h r e a to ft r a n s i e n tp r o b l e m c o n s e q u e n t l y s e c u r i t ya s s e s s m e n ta n d t r a n s i e n ts t a b i l i t yc o n t r o lh a v eb e e np a i dm o r ea n dm o r ea t t e n t i o nb yp o w e r s y s t e m a n a l y s t sa n dr e s e a r c h e r s a l t h o u g ht h ea d v a n c e sh a v eb e e nm a d eo v e rd e c a d e s ,t h e d i f f i c u l t i e so no n e - l i n ed y n a m i cs e c u r i t ya s s e s s m e n ta n di m p l e m e n to fe m e r g e n c y c e n t r e ls t i l le x i s to w i n gt on e t w o r k - r e d u c e ds y s t e mm o d e lo nt h ef r a m eo fc o i t h e m e t h o do fc a l c u l a t i o no fl i n ep o t e n t i me n e r g yb a s e do ns t r u c t u r ep r e s e r v i n gm o d e l , p r o v i d e st h a tt h eg l o b a li s s u eo fp o w e rs y s t e ms t a b i l i t yc a nb ec o n v e n e di n t ol o c a l i s s u e ,w h i c hi st h en o v e lv i e wo ft h eo n - l i n ed y n a m i cs e c u r i t ya n a l y s i s ,m o n i t o r i n g a n dc o n t r 0 1 a u t o m a t i cr e c l o s u r et e c h n i q u ew i l le n h a n c ep o w e rs y s t e mt r a n s i e n ts t a b i l i t y 1 h em a i nr e s e a r c ho ft h eo p t i m a lr e c l o s i n gt i m ei st h ei s s u eo fs t a b i l i t ya n dc o n t r 0 1 a u t o m a t i cr e c l o s u r ec a nb ec o n s i d e r e da st h em e t h o do fs t a b i l i t ya n dc o n t r 0 1 b a s e d o ns t r u c t u r e - p r e s e r v i n g t o p o l o g i c a le n e r g yf u n c t i o n f o rm u l t i m a c h i n ep o w e r s y s t e m ,t h ef e a t u r eo fl i n et r a n s i e n te n e r g yd i s t r i b u t i n go v e rn e t w o r ka f t e rat r a n s i e n t f a u l th a sb e e na n a l y z e d s e r i n gm e t h o do ni n s t a n t a n e o u sf a u l tr e c l o s i n gt i m ea n d p e r m a n e n tf a u l tr e c l o s i n gt i m ei sp r o p o s e dw h i c hi sb a s e do nn e t w o r kd y n a m i c v a r i a b l e s n l es i m u l a t i o ni ns i n g l e - m a c h i n ea n dm u l t i - m a c h h i n ei n d i c a t e st h a tt h i s m e t h o de n a b l e st od a m pt h ei n t e r c o n n e c t e dp o w e rs y s t e mo s c i l l a t i o ne f f e c t i v e l ya f t e r r e c l o s i n gt i m ea n di m p r o v et r a n s i e n ts t a b i l i t y i nt h ep r e m i s et h a ti ti sd i f f i c u l tt ou s e a d a p t i v es e t t i n gl a w so fo p t i m a lr e c l o s i n gt i m ef o rp e r m a n e n tf a u l to nl i n e ,t h er a n g e o f r e c l o s i n gt i m ea n dp r a c t i c a la d a p t i v es e t t i n gl a w sa r ep r o p o s e d o n - l i n ef o r e c a s eo f o p t i m a lr e c l o s i n gt i m ei sr e a l i z e d n 地s i m u l a t i o ne f f e c t i v e l yi n d i c a t e st h a tt h e m e t h o dc a ni m p r o v ep o w e rs y s t e mt r a n s i e n ts t a b i l i t y k e y w o r d s :p o w e rs y s t e mt r a n s i e n ts t a b iii t y ;l o c a i n e t w o r k d y n a m i c m e a s u r e m e n t :b r a n c ht r a n s i e n tp o t e n t i a ie n e r g yf u n c t i o n :l i n os t a b iii t y c r i t e r i o n :o p t i i r l a ia u t o r e c i o s r u et i m e 论文原创性声明 本人声明,所呈交的学位论文系在导师指导下本人独立完成的研究成果。 文中依法引用他人的成果,均已做出明确标注或得到许可。论文内容未包含法 律意义上己属于他人的任何形式的研究成果,也不包含本人已用于其他学位申 请的论文或成果。 本人如违反上述声明,愿意承担以下责任和后果: 1 交回学校授予的学位证书; 2 学校可在相关媒体上对作者本人的行为进行通报; 3 本人按照学校规定的方式,对因不当取得学位给学校造成的名誉损害, 进行公开道歉; 4 本人负责因论文成果不实产生的法律纠纷。 论文作者签名:徇:丞丛日期:! ! 12年上月j 生日 附录4 论文知识产权权属声明 本人在导师指导下所完成的论文及相关的职务作品,知识产权归属东北电 力大学。学校享有以任何方式发表、复制、公开阅览、借阅以及申请专利等权 利。本人离校后发表或使用学位论文或与该论文直接相关的学术论文或成果时, 署名单位仍然为东北电力大学。 论文作者签名:益:之叁日期:丑年上月日 导师签名: 养妒 日期:兰! ! z 年互一月三l e t 第1 章绪论 第1 章绪论 1 1引言 随着大容量远距离输变电工程的不断的开发建设以及大型电力系统的互 联,电力系统的暂态稳定性问题日益突出。安全和稳定是电力系统正常运行所 不可缺少的最基本条件。电力系统的安全稳定供电对于社会文明和国民经济至 关重要。电力系统安全稳定导则中对电力系统暂态稳定定义为:电力系统暂 态稳定是指电力系统受到大干扰后,各同步发电机保持同步运行并过渡到新的 或恢复到原来稳态运行方式的能力。通常指第一或是第二振荡周期不失步。电 力系统一旦失去暂态稳定性,轻则大面积停电,重则导致系统崩溃瓦解,故暂 态稳定性问题是现代电力系统发展所面临的的最大威胁之一。因此,准确地分 析电力系统在大扰动下的暂态稳定行为,确定适当的对策,包括各种控制的措 施以保证系统对暂态稳定性的要求,是电力系统设计以及运行人员的最重要也 是最复杂的任务之一。由于电力系统的暂态稳定性与系统的运行状态、故障状 态、电网的结构与参数以及系统中的多种安全自动装置的作用等方面的因素密 切相关,而且暂态稳定问题所具有的强非线性、故障相关性、全局性以及稳定 问题的表现与控制的局部性特点,加之现代电力系统规模日益庞大,因此电力 系统暂态稳定性的研究是一个非常复杂的问题,这一领域的研究吸引了大批电 力工作者,成为电力系统研究中的一个经久不衰的研究领域。 1 2电力系统暂态稳定分析方法的综述 电力系统暂态稳定分析目前主要有两种方法,即时域仿真法【i 】,以及直接法 1 2 , 3 1 ,又称暂态能量函数法。 时域仿真法将电力系统各元件模型根据元件拓扑关系形成全系统模型,这 是一组联立的微分方程组,然后以稳态工况或潮流解为初值,求扰动下的数值 解,即逐步求得系统状态量的代数量随时间的变化曲线,并根据发电机转子摇 东北电力大学硕十学位论文 摆曲线来判别系统在大扰动下能否保持同步运行,即暂态稳定性。时域仿真法 的优点是对电力系统的模型具有很强的适应性。电力系统中的任何元件只要可 以用微分或代数方程来描述其特性,原则上均可以在时域仿真的过程计及它们 的影响。另外,时域仿真法算法简单,便于程序实现使得基于该方法的暂态稳 定计算程序成为电力系统暂态稳定分析的主要工具。主要缺点是时域仿真程序 虽然可以提供电力系统机电暂态过程中系统状态量的详细变化信息,但程序本 身并不具备分析系统暂态稳定性的功能,只能通过观察扰动后发电机转子摇摆 曲线来判断系统是否稳定,不能对系统的暂态稳定性进行定量的评价。另外, 为了保证仿真过程中的数值稳定性,必须采用较小的计算步长,增加时域仿真 法的计算量,此外,由于缺乏可靠的暂态稳定终止判据,使得采用时域仿真法 的暂态稳定分析只能依赖较长时段的暂态过程仿真才能得到可靠的结果,导致 时域仿真法的计算速度较慢。 直接法自6 0 年代中期由g l e s s 提出,它不是从时域去看稳定问题,而是从 系统能量角度去看稳定问题。直接法的优点是能计及非线性,适应较大系统; 计算速度快,不必逐步积分求摇摆曲线,而是通过能量判据来判别稳定;给出 稳定度。缺点是模型较简单,目前真正实用的软件采用发电机二阶经典模型, 恒定阻抗负荷,尚不能计及励磁系统对稳定的作用;李雅普诺夫直接法相应的 稳定准则是充分条件,而不是必要条件,分析结果容易偏于保守。应用直接法 进行电力系统暂态稳定性分析的方法可概括为r u e p ( r e l e v a n tu n s t a b l e e q u i b r i u mp o i n t ) 方法、p e b s ( p o t e n t i a le n e r g yb o u n d a r ys u r f a c e ) 方法、 b c u ( b o u n d a r yo f s t a b i l i t yr e g i o nb a s e dc o n t r o l l i n gu n s t a b l ee q u i b r i u mp o i n t ) 方法、 e e a c ( e x t e n d e de q u a la r e ac r i t e r i o n ) 方法等。 八十年代后期,暂态能量函数法进入了日渐完善的发展阶段,对临界能量、 失稳模式以及故障相关性的相互关系的考虑以及计及更为详尽的系统模型,使 得暂态能量函数法在算法上越来越依赖于轨迹,使得计算精度上得到了很大的 改善,但在大规模实际系统的应用中仍存在不足,研究以及实践表明:当系统 呈现明显的两机失稳模式时,直接法才有较好的精度,而在系统呈现多群多摆 失稳模式的暂稳分析中则计算结果误差较大;所提出的分析方法是以建立在惯 性中心下的全局暂态能量函数为基础,必须依赖于全系统所有发电机的运动信 息,不仅未能充分体现电力系统的暂态稳定性主要表现为局部性的特点,且在 实际应用中增加了测量以及通信方面的困难,影响了直接法在电力系统安全监 测以及暂态稳定控制中的应用;通常需对网络进行收缩化简,导致原网络结构 和参数被“消隐”,网络中的运行变量和结构变量对系统暂态稳定性的影响无法 分析。即使八十年代后期出现的采用结构保持模型的暂态能量函数法也只是对 网络中的元件特性的作用给予更多的考虑,而网络本身的作用仍没有引起足够 的重视。 作为直接法研究的另方向,由m i c h e l 等人于1 9 8 3 年提出的单机能量函数, 开辟了一个以系统局部发电机的角度分析全系统稳定性的新思路,虽然单机能 量函数与全局能量函数具有相似的表达形式,但其更侧重于单台发电机的能量 平衡关系,以系统临界机的稳定性代替对全系统的稳定性的判断。然而对网络 的化简以及所采用的惯性中心坐标系下的系统模型使得以单机能量函数为基础 的分析方法仍无法应用于在线的暂稳分析以及对网络的评价中。 电力系统暂态分析模型主要有两种,分别为电力系统经典模( c l a s s i c a lp o w e r s y s t e mm o d e ) 和网络结构保持模型( n e t w o r ks t r u c t u r ep r e s e r v i n gm o d e l ) 。 经典模型是基于两个重要的假设获得的,一是基于故障前得到的各节点电 压的条件,从而负荷功率可以用恒定阻抗来表示;二是消去了所有实际网络节 点,只保留发电机内节点。这样 机系统的经典模型就可以表示成知个常微分 方程组。但这种模型由于网络的收缩导致了网络结构的稀疏性和网络拓扑的丢 失,因此不能研究网络中各个不同元件对暂态稳定性的影响。 网络结构对电力系统暂态稳定性有重要影响,从网络入手研究电力系统的 暂态稳定性问题最早始于八十年代初。1 9 8 1 年,b e r g e n 和h i l l 另辟蹊径,定义 了结构保持的拓扑暂态能量函数并提出临界割集以及割集暂态能量的概念,注 重网络的局部变量与全系统暂态稳定性的关系,但所提出的方法仍未摆脱早期 的直接法在确定临界能量上的粗浅认识。主要表现为:以网络中割集的临界能 量的大小分析系统暂态稳定性,未考虑临界割集与系统失稳模式的对应关系; 在计算割集的临界能量方面,则简单套用单机系统在求解不稳定平衡点( u e p ) 的 模式,以初始潮流下支路的两端相角差的补角作为该支路的不稳定点,并且忽 略了网络中各节点的电压在系统动态过程中的变化,等价于将多机系统的稳定 东北电力大学硕十学位论文 性问题简化为发电机内电势恒定的单机一无穷大系统稳定性问题来解决。 直接法不可能替代时域仿真法,二者之间具有相辅相成的关系。在离线分 析时,可以用直接法作“筛选”工具,先在简单模型下选出稳定度最差的事故 以便进一步作精细的时域分析,从而可大大节省人力和机时;在在线安全分析 中,直接法可以使目前的静态安全分析发展为动态安全分析,即计及系统暂态 稳定的安全分析,从而有利系统的安全运行。 1 3自动重合闸技术研究的现状 1 基于永久性与瞬时性故障判别的“自适应重合闸” 8 0 年代初葛耀中教授提出了“自适应重合闸”的思想,为自适应技术在继 电保护领域的应用开辟了广阔前景。实现自适应重合闸的实质是,在做出是否 重合的决策以前即能正确识别瞬时与永久故障。国内外学者在此方面做了大量 工作。对单相重合闸可利用耦合电压判据和二次电弧电压谐波特性判定瞬时与 永久故障:对于带并联电抗器补偿的超高压输电线路提出了根据自振电压特点 判别三相瞬时与永久故障的方法;对无并联电抗器补偿的线路已初步提出了自 适应分相重合闸的方法判别瞬时与永久故障1 4 卅。此外,人工神经网络及其他新 技术也应用于判别瞬时与永久故障。文献【7 】将模糊控制理论引入单相自动重合 闸过程瞬时与永久故障的判定,修正了现有耦合电压判据。文献【8 】运用了小波 变换捕捉瞬时与永久故障的故障特征。文献【9 】利用故障暂态产生的高频信号来 判别瞬时与永久故障。文献 1 0 ,1 1 1 利用电弧特性识别永久与瞬时性故障。文献 【1 2 】利用故障暂态产生的高频信号来判别瞬时与永久性故障。人工神经网络 ( a n n ) 具有高度神经计算能力以及极强的自适应性、鲁棒性和容错性,它可以充 分利用很多简单判据所不能利用的复杂故障特征,并可以改进和综合简单判据, 使故障判定更为准确可靠【1 3 1 4 1 。文献【1 5 】将模糊神经网络应用于单相自适应重合 闸。 当今电力系统在单相瞬时与永久故障判定上已经较为完善,但对三相瞬时 与永久故障的判定还没有比较可靠和已投入实用的判定方法。如何在现有条件 下充分利用最佳重合增强系统的稳定性,文献【1 6 】给出了优化重合时刻的策略。 - 4 - 2 基于电力系统暂态稳定影响提出“最佳重合闸时间” 目前正确区分瞬时性与永久性故障还存在困难。现场自动重合闸多采用继 电保护跳闸切除故障后,延时一段固定的时间,再次重合断路器的方法。若是 瞬时性故障,重合成功,系统进入新的正常运行状态。若重合于永久性故障对 系统的暂态稳定会构成很大的威胁。如果能够采用某些切实可行而又行之有效 的措施,使得即使重合于永久性故障,也不会加剧第一次故障造成的系统摇摆, 最好还能对其有一定的阻尼作用,这样就会变不利为有利,从而更大程度地发 挥重合闸的作用。这也正是“最佳重合闸时间”所要解决的问题。 文献 1 7 1 通过对单机无穷大系统的分析指出,在最佳时刻重合于永久性故 障,不但不会引起系统失稳,反而会阻尼系统的振荡。而对于在故障后回摆中 失稳的系统,在最佳时刻重合于永久性故障还可能保持系统稳定。 文献 1 8 ,1 9 通过理论分析表明,无论是瞬时还是永久故障,都存在阻尼系 统摇摆的重合时机,在这个时机重合不仅不会加剧摇摆,反而可以有效地阻尼 系统的摇摆。 文献【2 0 】从理论上分析了重合闸对系统稳定性的影响,并通过仿真验证最佳 重合时刻的存在。指出系统运行方式和接线方式经常变化,重合闸的最佳时刻 也变化的。针对简单的两机系统,根据理论分析得出结论:重合闸最后一次操 作的最佳时刻是距离新的稳定平衡点最近的时刻,理想情况是角度、角速度过 稳定平衡点的时刻,即角度最接近新的稳定平衡点、角速度接近零的时刻。 暂态能量函数( t e f ) 法是分析电力系统稳定的一种比较成熟的方法。该方法 利用系统的能量出现最小值的时刻来确定最佳的重合时刻。文献 2 1 1 n 用重合成 功后的系统导纳矩阵和稳定平衡点来计算重合系统的暂态能量。文献 2 2 1 建立了 单机无限大母线系统能量函数模型,并给出了系统稳定的能量函数条件;文献 2 3 】 建立了分析重合闸时刻对电力系统稳定性影响的数学模型,使用能量函数导出 瞬时性故障与永久性故障的最佳重合条件,为重合闸的时间整定和最佳重合闸 的研究奠定了理论基础。文献 2 4 2 6 建立了多机系统以惯性中心为参考的暂态 能量函数。根据瞬时和永久故障的不同给出了最佳重合的系统能量函数表达式。 在实际的电力系统中,能量函数的计算十分困难,难以实时采集到全系统的数 据;而即使能计算能量函数,要确定这一能量出现最小值的时刻仍然是一个问 题,尤其进行在线分析时更加困难。 文献 2 7 1 提出了一种利用e e a c 等值来快速计算永久性故障最佳重合闸时 刻的方法。但这种方法需要将系统变换成等值的两机系统并最终变换成单机无 穷大系统才能进行稳定性分析。 在文献 2 8 ,2 9 】中利用小波变换提取信号特征和用a n n 来识别永久性故障 和瞬时性故障。但电力系统的复杂性,故障类型与故障位置的多样性使样本空 间庞大,训练的工作量增加。 文献【3 0 】给出了一种重合闸较为实用的在线算法。将网络等效为重合线路两 侧的两个系统以及它们之间的等值联络线,采用发送功率端单端测量信息,结 合瞬时与永久故障判定对送受端明确的线路不失为一种简单易行的在线算法。 但是它所用到的大量离线等值运算,将会对潮流及结构经常改变的系统造成较 大误差。 最佳重合时间计算软件已经编制成功,它可以利用暂态能量函数法或者扩 展等面积法( e e a c ) 离线计算最佳重合时间j 。 文献 3 2 1 提出支路暂态势能分析法。根据暂态能量在电力系统中分布变化特 点,利用极少量局部动态观测信息实时整定最佳重合闸时间。该方法不依赖于 离线计算,通过对系统暂态过程中网络局部变量的在线检测,实现以最大限度 提高系统暂态稳定性为目标的重合闸时间的实时整定【3 3 j 4 j 。 3 自动重合闸对汽轮发电机组轴系扭振的影响 近年来随着现代电力工业的发展,汽轮发电机组功率迅猛增长,轴系变得 相对细长,电气操作引起的机组扭振问题日益得到关注。文献 3 5 】研究了电网中 各种故障及重合闸操作对轴系寿命的影响。文献【3 6 】指出永久性故障下重合闸时 刻对轴系扭振和发电机摇摆影响很大,并且故障类型不同,变化规律也不同。 文献【3 7 】建立了汽轮发电机轴系暂态能量函数,分析了重合闸操作时序对汽轮发 电机组轴系扭振的影响,指出选择合适的时刻完成最后一次电气操作,不仅不 会加剧扭振反而会减弱原有的扭振。文献 3 8 1 给出了针对轴系扭矩理想重合时刻 的判据,按照最后一次操作后能量函数值最小的原则,给出瞬时性故障和永久 性故障下理想重合时刻的计算方法。 自适应分相重合闸方式,可以避免系统三相重合以及重合于多相永久故障, 第1 章绪论 缓解重合闸操作对系统稳定性以及汽轮发电机组轴系扭振的影响。文献 3 9 ,4 0 】 提出了分相重合逻辑。利用分相重合,配合耦合电压判据,用以解决多相故障 时瞬时与永久故障的判定。文献【4 1 】为了避免首合相重合于永久故障,进一步提 出首合相判据。文献【4 2 】提出了三相顺序分相重合的策略缓解重合闸操作对汽轮 发电机组轴系的冲击。 1 4 课题研究的目的和意义 自动重合闸技术作为保证系统安全稳定运行的一项重要措施,在国内外电 力系统中得到了极为广泛的应用。最佳重合闸时刻的研究实质是一个稳定控制 问题,可把重合闸看成一种稳定控制手段。使用自动重合闸的目的是为了在瞬 时性故障消除后使线路重新投入运行,从而在最短时间内恢复整个系统的正常 运行状态。电力系统的运行经验表明,输电线路发生的故障大都是瞬时性的。电 力系统的运行资料统计表明,自动重合闸的动作成功率相当高,一般在6 0 9 0 0 , 6 之间。由此可见,自动重合闸对于提高瞬时性故障时供电的连续性,双侧电源 线路系统并列运行的稳定性,以及纠正由于断路器或继电保护误动作引起的误 跳闸,都发挥了巨大的作用。然而,自动重合闸在带来巨大经济效益的同时, 也给电力系统带来一些不利影响,主要表现为:( 1 ) 当重合于永久性故障时,一 方面电力系统将再次受到短路电流的冲击,有可能造成重合后电力系统的摇摆 幅度增大,甚至可能使电力系统失去稳定性;另一方面继电保护再次使断路器 断开,断路器在短时间内连续两次切断短路电流,恶化了断路器的工作条件。 ( 2 ) 在大型火电厂的高压出线上采用自动重合闸,有可能激发起汽轮发电机组轴 系扭振,造成轴系某些部件或联轴器的断裂或损伤。长期以来,针对自动重合 闸带来的这些不利影响,各国学者从不同的角度进行了研究。从已有的研究成 果表明最优重合闸时刻是存在的,即并不是越快重合越有利于抑制重合后系统 后续摆的振荡。近年来,电力工作者对系统发生瞬时性故障时如何整定最优重 合闸时间进行了深入的探索。但目前多数的研究仍局限于离线的整定分析,且 方法复杂,难以适应大规模系统的运行方式以及故障方式的变化。随着微机式 继电保护技术的进步以及全球定位系统( g p s ) 在电力系统中的应用,为实现自动 适应系统运行以及故障状态变化的自动重合闸装置创造了条件。但如何能够有 东北r 乜力大学硕十学位论文 效地利用量测到的信息准确实时地整定最优重合闸时间以提高系统的暂态稳定 水平仍需做进一步的研究。 如果线路重合闸技术在改善电力系统稳定性上得到实际的应用,则必须考 虑以下几个问题:应尽可能采用本地测量信息作为重合闸装置的输入信号,减 少数据采集数量以及大量数据通讯负担;重合闸整定策略应能在线生成,尽可 能减小计算时间;重合整定策略应能对大规模系统的复杂多变的运行方式及故 障形式具有较好适应能力。 支路暂态势能分析法摆脱目前的电力系统暂态稳定性定量分析方法需要全 系统发电机运动信息的限制,以网络中局部动态观测到的少量数据为信息源, 提出具有独立于系统故障状态、运行状态、网络结构的系统的失稳判据,建立 具有描述支路、割集、以及系统稳定度的量化指标体系【4 ”5 1 。本文基于支路暂态 势能分析方法,根据电力系统的暂态能量变化特点,结合暂态能量在网络中的 分布与系统稳定性的关系,从系统局部能量出发,针对瞬时性故障,提出以故 障切除后包含故障线路的脆弱割集两端相角差达到最小值的时刻作为最佳重合 闸时间的整定方法。针对永久性故障,提出以故障线路切除后包含故障线路的 割集两端相角差达到最大值后开始减小的过程中,并在到达割集新的稳定平衡 点以前重合于故障,在割集新的稳定平衡点处再次切除故障,使该割集最后一 次操作所承担的暂态势能冲击为零的时刻作为永久性故障最佳重合闸时间的整 定方法。由于此方法无法在线应用,提出了永久性故障重合闸时间的实用整定 方法。故障线路切除后包含故障线路的割集两端相角差达到最大值并开始减小 的过程中在割集新的稳定平衡点处再次重合于故障,在该割集两端相角差首次 为最小值,角速度差首次为零时再次切除故障。这种方法得到的重合闸时间虽 然不是最佳重合闸时间,但在改善电力系统暂态稳定性方面仍可达到很好的效 果。瞬时性故障最佳重合闸时间的整定方法与永久性故障重合闸时间的实用整 定方法都不依赖于离线计算,通过对系统暂态过程中网络局部变量的在线检测, 实现以最大限度提高系统暂态稳定性为目标的重合闸时间的实时整定。能自动 适应电力系统运行方式以及故障状态的变化。 8 - 第1 章绪论 1 5 本文的主要研究内容 本文首先回顾了电力系统暂态稳定分析方法与自动重合闸技术的研究现 状。虽然文献中已给出了一些最佳重合时间的算法,但其主要思想还是基于负 荷及网络情况很少变动,能够获取全网信息的,用于离线计算的算法。如何充 分利用最佳重合计算装置安装处的系统信息准确捕捉最佳重合时机是一个值得 研究的问题。针对目前自动重合闸技术研究中的不足,选择支路暂态势能分析 法为理论基础,通过分析网络中暂态能量分布与系统稳定性的关系以及对网络 中输电瓶颈( 割集) 的暂态能量变化特点的讨论,提出了仅依赖电力系统网络局 部测量信息的瞬时性故障与永久性故障最佳重合闸时间的整定方法。 本文的主要研究工作如下: 1 以支路暂态势能函数为理论基础,通过对单机及多机系统的仿真验证了 网络能量在系统中的分布具有积聚性的特点。网络中割集的脆弱性将在很大程 度上制约系统的暂态稳定性。电力系统发生故障后临界割集的获取对于最佳重 合闸时间整定至关重要。本文确定了对于双回或多回输电线路之一发生故障情 况以及单一线路发生故障情况下被监视线路的选取原则。通过对被监视线路两 端相角差及角速度差信息的获取可实现最佳重合闸的整定方法。 2 本文根据多机系统暂态能量函数以及包含故障线路的脆弱割集的有功功 率随相角差变化曲线,提出了通过跟踪输电瓶颈( 割集) 暂态能量变化来实时整 定最佳重合闸时间的方法。针对瞬时性故障,提出包含故障线路的割集两端相 角差达到最小值时刻作为最佳重合闸时间的整定方法。针对永久性故障,提出 以故障线路切除后包含故障线路的割集两端相角差达到最大值后开始减小的过 程中,并在到达割集新的稳定平衡点以前重合于故障,在割集新的稳定平衡点 处再次切除故障,使该割集最后一次操作所承担的暂态势能冲击为零的时刻作 为永久性故障最佳重合闸时间的整定方法。此法只能用于离线计算。 3 在永久性故障最佳重合闸时间整定方法难于在线应用的前提下,提出了 重合闸的时间范围,当割集两端相角差处于不断减小的过程中,在这一时间范 围内重合闸可以改善电力系统暂态稳定性抑制系统振荡。提出了可以在线应用 的永久性故障重合闸时间的实用整定方法。此方法得出的重合闸时问虽然不是 东北电力大学硕t 学位论文 最佳重合闸时间,但再次故障重合时间与再次切除时间相配合在改善电力系统 暂态稳定性方面仍可达到很好的效果。多机系统的仿真验证了此方法的有效性。 4 利用预测技术对瞬时性故障以及永久性故障最佳重合闸时间进行在线预 测。 第2 章幕于实际轨迹的支路暂态贽能函数 第2 章基于实际轨迹的支路暂态势能函数 2 1 引言 电力系统机电暂态数学模型是研究电力系统暂态稳定问题的基础,其一般 可以描述为由微分一代数方程组联立而成,即 i x = f c x ,l ,),、 1 0 = g ( z ,j ,) ” 式中,x r ”为状态变量,y r 为非状态变量,厂与x 同维,g 与y 同维。 就本质而言,电力系统的稳定问题是研究在j r ”空间中d a g = o 所构成的超曲 面上的微分方程组解的稳定性问题。 自6 0 年代,l y a p u n o v 第二方法被引入电力系统暂态稳定性分析中以来,人 们构造了能量型的l y a p u n o v 函数以分析电力系统的暂态稳定闯题。但由于直接 法适合于用微分方程来描述的非线性动力系统,因此传统的能量函数的建立采 用网络化简技术将网络收缩到发电机内节点,这样既消去了网络方程的约束, 同时又消去了在微分方程中出现的非状态变量,使得在r ”空间中有约束的微 分方程化为矽空间中无约束的自治微分方程,在此基础上建立了基于惯性中心 坐标系下的全局能量函数,并形成了一类以全局能量函数为基础的被称为暂态 能量函数法的暂态稳定分析方法,但由于对网络的收缩化简处理所导致网络结 构以及运行变量在能量函数中不能显式表示,因此在这类方法中无法分析网络 对电力系统暂态稳定性的影响。 在结构保持模型被引入暂态稳定分析后,电力网络对暂态稳定的影响越来 越引起注意。一旦系统失去稳定,通常表现为在系统的薄弱环节,即临界割集 处“撕裂”。网络中的瓶颈元件的状态量往往蕴含着丰富的暂态稳定信息。 本章在结构保持模型的基础上,研究建立基于系统实际故障轨迹的支路暂 态势能函数,为分析系统中网络局部暂态能量的变化特性奠定基础。 2 2 支路暂态势能函数的建立 2 2 1 单机无穷大系统的支路暂态势能函数 单机无穷大系统如图2 - 1 所示。 g12 3 s 图2 l 单机无穷大系统 在图2 - 1 的系统中,若发电机采用e 。恒定的经典二阶模型,假定不计励磁 调节器和调速器的作用,且不考虑各元件的电阻,则功角特性的一般表达式为: 最( 占) :宰s i n 8 ( 2 - 2 ) 勤z 式中艿一左和【7 之间的相角差: x :一由发电机内节点至无穷大母线间的总电抗。 若在t = 0 时刻厂点发生故障,t = t 时刻切除故障线路,不计重合闸的作用, 则故障前、故障期间、故障后的功角特性分别可以描述为: 圪( 占) :罂s i n 8 ,f :1 ,2 ,3 ( 2 3 )圪( 占) = ; ,f = , ( 2 - 3 ) 而z , 功角特性曲线如图2 - 2 所示。 6 06 6 。 6 6 。 图2 - 2 单机无穷大系统的功角特性曲线 第2 章摹于实际轨迹的支路暂态势能函数 发电机的转子运动方程为: 至2 7 国 ( 2 川 警= 击肾w ) 】 式中m 一发电机转子的惯性时间常数; 万一发电机相对于无穷大系统的转予角度; ( - o 。一额定角速度: 一发电机转子角速度和同步速的偏差; 尸k 一发电机的机械功率; b ( 艿) 一发电机的电磁功率。 nn 矗= s i n p f 0 ,8 = s i n p t o ,艿“= 石一万。 ( 2 - 5 ) 1 1 1 3 m 其中,磊一发电机转子的初始角: 万一发电机转子的稳定平衡点( s e p ) ; 6 。一发电机转子的不稳定平衡点( u e p ) 。 氏为发电机转子第一次摆动的最大摆角,若氏 占”,则系统可维持稳定。 描述网络中各节点的有功功率平衡的代数方程为: 最( 艿) 一p o l = 丑2 ( q :) 丑:( q :) 一p o := 昱,( c r 2 ,) ( 2 6 ) 最3 ( a k ) 一易3 = & ( c r 3 s ) 式中盯1 2 、盯2 3 、盯3 s 分别为电路段l 2 、2 - 3 、3 - s 的两端相角差;p o l 、p m 、肠 分别为节点l 、2 、3 的有功负荷;鼻2 ( q 2 ) 、气( 盯) 、b 。( c r 3 。) 分别为电 路段1 - 2 、2 3 、3 - s 的有功功率。 由于发电机的机械功率保持不变,则相对于故障后的系统稳态平衡点( s e p ) 的网络节点有功功率平衡方程为: d g 呓嵫璐 = i | = 一 一 一 呓磁 东北屯力大学硕 学位论文 式中磁、呓、只:分别为支路1 - 2 、2 - 3 、3 - s 相对于故障后的系统稳态平衡点 ( s e p ) 的有功功率。 由式( 2 6 ) 、( 2 7 ) 得故障后的暂态过程中网络节点功率平衡方程为: b ( 艿) 一= e :( 盯,:) 一墨; 丑:( o 1 2 ) 一只;= 只。( c r 2 3 ) 一,尝( 2 8 ) 马3 ( c r 2 3 ) 一磁= 只s ( o s ) 一璐 式( 2 - 4 ) 中的转子运动方程两端同乘掣,可得: 坳。百d o ) + ( 兄( 占) 一嘞) i d 8 = o ( 2 9 ) 占= o g l + 盯1 2 + 口2 3 + a i s ( 2 - l o ) 式中盯。为电路段g 1 的两端相角差。 将( 2 - 8 ) 、( 2 1 0 ) 代x ( 2 9 ) 中,并建立对应予单机无穷大系统的故障后的稳定 平衡点( s e p ) 的系统暂态能量函数为: 肚扣耐+ 荟4 ( 聃) 一p z ) d u ,k - - g - 1 l - 2 - 2 2 - 3 3 s ( 2 _ 1 1 ) 其中,u 为积分变量。 由式( 2 1 1 ) 可见,相对于故障后的稳定平衡点( s e p ) ,单机无穷大系统的暂态 势能由系统中各电路段的暂态势能之和组成。 则单机无穷大系统中各电路段的暂态势能的函数表达式为: ( 以) = n 最( “) 一露】砌 ( 2 1 2 ) 若欲研究单机无穷大系统沿实际故障轨迹的能量变化,即电路段k 以某状态 点盯:为暂态势能的参考点,需将( 2 - 1 2 ) 进行积分变换,以仃? 为初始点,沿系统 实际故障轨迹的电路段k 暂态势能的函数表达式为: v p u ( c r 。) = e ( 最( 沪e :) d u + e ( 最( 沪耳) 砌( 2 - 1 3 ) 在式( 2 1 1 ) q b ,在忽略了支路电阻的耗散损耗的条件下,单机无穷大系统的 笫2 章摹于实际轨迹的_ 立路暂态辨能函数 势能表示成系统中的所有支路( 包括发电机内阻抗支路) 的暂态势能之和,并在 式( 2 1 3 ) 中给出建立于系统实际轨迹的支路暂态势能函数,虽然看起来只是一个 形式上的变化,但却可以深入地分析单机无穷大系统中每一条支路在暂态过程 的能量变化,进而可分析它们对系统暂态稳定性的影响。 2 2 2 基于轨迹的多机系统支路暂态势篚函数 若一多机系统中有m 台发电机,n o 个节点,l o 条支路,负荷节点为n o - m 个, 如图2 3 a ) 。在原网络中引入代表虚构的发电机内电势节点,通过发电机暂态电 抗与原网络相连,形成结构保持的增广网络。在增广网络中,系统节点总数为 n = m + n o ,支路总数为卢+ 肌。式中,l ,m 为发电机内电势节点,m + l ,2 m 为发电机出口节点,2 m + l ,行为负荷节点,如图2 - 3 b ) 。 a ) 原网络”增广网络 图2 3四节点电力系统 在系统的增广网络中,由于计及了各节点的有功功率平衡方程,使得系统 的机电暂态的数学模型可描述为形如式( 2 1 ) 的一组联立的微分和代数方程。 假设发电机采用经典的二阶模型,忽略励磁调节器以及调速器的作用,负 荷采用恒功率的负荷模型。 在增广网络中,若以节点7 的电压相角占。为参考角,各节点电压相角为: q = 4 一玩,i = l ,n l ( 2 1 4 ) 对于增广网络中的,条线路,各支路的电压相角差为: o - k = 4 一艿,k = 1 , ( 2 - 1 5 ) 其中,支路k 为联络节点i 和节点,的支路。 节点电压相角以及支路的电压相角差的列向量表示为: 口= 【,t n - 1 】,t r = q ,o t 】( 2 - 1 6 ) 有关系如下: o r = a 7 口 ( 2 1 7 ) 其中,爿一增广网络的简化关联矩阵。 潮流方程可以写为: p = a g ( a 口) = f ( a )( 2 - 1 8 ) 若忽略发电机以及负荷的阻尼特性,则结构保持的多机系统的状态空间表 达式为: 甾毒珂i f ( a ) 叫, q 棚, 【西g = 一m :1 霉 一p 。】 其中,肘;一发电机的惯性时间常数矩阵; 国。一发电机的角速度向量; 品一单位矩阵: p ,一相应稳定平衡状态的支路有功功率向量。 在式( 2 - 1 9 ) q b 两侧同乘虚,可构造 v = m i 西t i 国l + 写 f ( a ) - p p ( 2 - 2 0 ) 假设 ,0 ) 是系统故障后的稳定平衡点( s e p ) ,则相对于此平衡点,建立全 系统暂态能量函数如下: v ( a ,国g ) = 去国;吖g 国g + 矽( 口,口5 ) ( 2 2 1 ) 式中w ( a ,口。) = e 厂( ) - f ( a 5 ) 】咖,r 为积分变量( 2 - 2 2 ) 由式( 2 - 1 8 ) 知,p = 厂( f ) = a g ( a 7 口) ,则势能函数可以表示为: w ( a ,口5 ) = 旷o ) - f ( a ) 坼 = f ( a r r ) 厂( 4 7 口5 ) 】7a 7 d f ( 2 - 2 3 ) 将盯= a 7 口代入( 2 2 2 ) ,势能函数可变换为: w ( a ,口。) = n g ( “) _ g ( 盯) 】7 d u :圭e ( 钆s i n u - s i n u - b ks i n o ;) d u ( 2 2 4 ) = e ( 钆 ( 2 一 k f f i l 。 式中b k = ( k _ 以) ,k 、巧分别为支路的两端节点电压,瓤为支路七的电抗。 若以支路相角差的变化轨迹的任意点,为参考点,则由式( 2 - 2 4 ) 构造建立于 实际故障轨迹的全系统暂态能量函数如下: 矿= 三喜m m ? + 喜e 限( “) 一巧】幽+ 喜e 哦( “) 一巧】出 m = + i # lk f f i l ( 2 - 2 5 ) 根据式( 2 - 2 5 ) ,沿实际轨迹,系统的动能可以表示为每台发电机的动能之和, 而系统的暂态势能,在忽略电阻能量耗散的条件下,由系统增广网络中的所有 支路的暂态势能的总和表示。 其中,发电机珀q 动能可以表示为: 1 ( ,) = 妄m ,m ? ( 2 - 2 6 ) 上 支路暂态势能函数的表达式为: ( 吒) = e 孵( “) 一军】咖+ ( 一) ( 2 - 2 7 ) 其中,( 盯:) = e 限( “) 一巧】咖。 在式( 2 2 7 ) q b ,巧为支路肼日对于故障后的稳定平衡点( s e p ) 的有功功率,即 耳= b k s i nc r ;,若故障后与故障前的网络结构相同,则巧为故障前稳态情况下 的支路埔有功功率。若故障后网络结构发生变化,则口为网络结构发生变化后 稳念潮流中的歧路的有功功率。 对于网络中的任意节点i 、,若它们的电压相角分别为4 、万,角速度偏 差分别为国。、国,那么有: 等嘞即誓嘞国,( 2 - 2 8 )_ = 矿2 国国一i 尹2 国, 则连接节点i 、j 的支路后有如下关系, 孥:丝掣嘞盈( 2 - 2 9 ) 西 出 其中,仃t = t j ,纸= 国,一国,。 将式f 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论