



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_函 数 解 析 式的常见几种 求 法 一、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知,求 的解析式解:, 二、 待定系数法:在已知函数解析式的构造时,可用待定系数法。例1 设是一次函数,且,求解:设 ,则 三、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则,解得: ,点在上 把代入得: 整理得 四、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求解:令,则, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设求解 显然将换成,得: 解 联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解 为偶函数,为奇函数, 又 ,用替换得: 即 解 联立的方程组,得 , 六、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 分别令式中的 得: 将上述各式相加得:, 七、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有 再令 得函数解析式为:W
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训体系构建及在线学习平台
- 雨后的彩虹桥写景童话作文15篇
- 2025年福建省福州市闽清县机关事务服务中心招聘1人考前自测高频考点模拟试题及完整答案详解
- 2025广东深圳大学彭孝军院士团队专职研究员招聘2名考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年福建省漳州市医院招聘若干人考前自测高频考点模拟试题有答案详解
- 企业培训材料标准化制作指南
- 2025年宝应县公安局招聘警务辅助人员30人模拟试卷附答案详解(模拟题)
- 2025安徽安庆医药高等专科学校面向校园招聘21人考前自测高频考点模拟试题及答案详解(必刷)
- 2025内蒙古锡林郭勒盟太仆寺旗乌兰牧骑招聘事业编制舞蹈演员2人模拟试卷有答案详解
- 2025湖南湘西州泸溪县妇幼保健计划生育服务中心招聘高校见习生5人考前自测高频考点模拟试题及答案详解(有一套)
- 2025至2030全球及中国InfiniBand行业发展趋势分析与未来投资战略咨询研究报告
- 2025年水资源利用与水资源安全保障体系构建与完善资源分析可行性研究报告
- 广东省深圳市龙华区2024-2025学年一年级上册期中测试数学试卷(含答案)
- 宅基地争议申请书
- 河南省百师联盟2025-2026学年高二上学期9月联考化学试题(A)含答案
- 重庆通信安全员c证题库及答案解析
- 颈椎骨折护理围手术期管理方案
- 新型建筑材料的实验检测技术与创新进展
- 2025年德州中考数学试卷及答案
- 住宅小区物业管理应急预案方案
- 【MOOC期末】《中国马克思主义与当代》(北京科技大学)期末慕课答案
评论
0/150
提交评论