




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
历届高考数学试题分类选编 北大附中广州实验学校 王 生历届高考中的“二项分布及其应用”试题汇编一、选择题: (2006年)1.(2006安徽文、理)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ) A B C D2.(2006福建理)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于A. B. C. D.信号源3.(2006江苏)右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A)(B)(C)(D)4(2006江西文)袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为()5、(2006江西理)将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为( )A a=105 p= B.a=105 p= C.a=210 p= D.a=210 p= (2005-2000年)1(2005江西理)将1,2,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( )ABCD2(2005辽宁)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )ABCD3(2005山东文、理)10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是(A) (B) (C) (D)4.(2004广东)一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 (A)0.1536 (B) 0.1808 (C) 0.5632 (D) 0.9728 5.(2004北京理)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种。在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于 A. B. C. D. 6(2004重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A B C D 7(2004全国卷文)从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )ABCD二.填空题: (2006-2000年)1.(2006湖北文、理)接种某疫苗后,出现发热反应的概率为080,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 。(精确到001) 2、(2006上海文)在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是_(结果用分数表示)。3(2006上海理)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示)4.(2005天津文)在三角形的每条边上各取三个分点(如图)以这9个分点为顶点可画出若干个三角形若从中任意抽取一个三角形,则其三个顶点分别落在原三角形的三条不同边上的概率为_(用数字作答)5(2005重庆理)某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 6.(2004福建理)某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:他第3次击中目标的概率是0.9;他恰好击中目标3次的概率是0.930.1;他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正确结论的序号).7.(2004春招安徽文、理)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少要有1名女生的概率是_.8.(2004春招上海)一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是_(结果用分数表示).9(2004广东)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是 (用分数作答)10(2004辽宁)口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以数值作答)11(2003上海文、理)某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示)12(2002上海文、理)在某次花样滑冰比赛中,发生裁判受贿事件.竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分.若14名裁判中有2个受贿,则有效分中没有受贿裁判的评分的概率是 .(结果用数值表示)13(2001春招上海)在大小相同的6个球中,2个红球,4个是白球若从中任意选取3个,则所选的3个球中至少有1个红球的概率是_(结果用分数表示)三、解答题:(2006年)1.(2006北京理)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.()分别求该应聘者用方案一和方案二时考试通过的概率;()试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)2.(2006福建文)每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。3(2006安徽文)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。()求所选用的两种不同的添加剂的芳香度之和等于4的概率;()求所选用的两种不同的添加剂的芳香度之和不小于3的概率;4(2006湖北理)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。()、试问此次参赛学生总数约为多少人?()、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表01234567891.21.31.41.92.02.10.88490.90320.91920.97130.97720.98210.88690.90490.92070.97190.97780.98260.8880.90660.92220.97260.97830.98300.89070.90820.92360.97320.97880.98340.89250.90990.92510.97380.97930.98380.89440.91150.92650.97440.97980.98420.89620.91310.92780.97500.98030.98460.89800.91470.92920.97560.98080.98500.89970.91620.93060.97620.98120.98540.90150.91770.93190.97670.98170.98575. (2006湖南文)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):()恰好有两家煤矿必须整改的概率;()某煤矿不被关闭的概率;()至少关闭一家煤矿的概率.6(2006全国卷文)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。(I)求取6件产品中有1件产品是二等品的概率。(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。7(2006山东文)盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:()抽出的3张卡片上最大的数字是4的概率;()抽出的3张中有2张卡片上的数字是3的概念;()抽出的3张卡片上的数字互不相同的概率.8(2006浙江文、理)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.()若n=3,求取到的4个球全是红球的概率;()若取到的4个球中至少有2个红球的概率为,求n.9(2006重庆文)甲、乙、丙三人在同一办公室工作。办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为、。若在一段时间内打进三个电话,且各个电话相互独立。求:()这三个电话是打给同一个人的概率;()这三个电话中恰有两个是打给甲的概率;(2005年)1. (2005北京文科)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)甲恰好击中目标2次的概率; (II)乙至少击中目标2次的概率; (III)求乙恰好比甲多击中目标2次的概率2(2005湖北文)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. ()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; ()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; ()当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).3(2005湖南文)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. ()求3个景区都有部门选择的概率; ()求恰有2个景区有部门选择的概率.4、(2005江苏)甲、乙两人各射击一次,击中目标的概率分别是和。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。(1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?5(2005江西文)A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.6.(2005全国卷文)甲、乙两队进行一场排球比赛根据以往经验,单局比赛甲队胜乙队的概率为0.60,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束设各局比赛相互间没有影响()前三局比赛甲队领先的概率;()本场比赛乙队以:取胜的概率7.(2005山东文)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终止每个球在每一次被取出的机会是等可能的,用表示取球终止时所需的取球次数()求袋中原有白球的个数;()求取球2次终止的概率;()求甲取到白球的概率8(2005浙江文)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p () 从A中有放回地摸球,每次摸出一个,共摸5次(i)恰好有3次摸到红球的概率;(ii)第一次、第三次、第五次摸到红球的概率 () 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值9(2005重庆文) 加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为、,且各道工序互不影响. ()求该种零件的合格率; ()从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的 概率.(2004-2000年)1(2004福建文)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转让旅馆协议合同模板
- 夫妻房产份额约定协议书
- 油脂中转协议书
- 车辆买卖鞋子合同协议
- 道路改造采购合同协议
- 转让水泥球磨机合同协议
- 专业咨询与服务外包合同协议
- 退股违约金合同协议
- 行政制度新人培训大纲
- 安全技术服务合同书
- 第一单元大单元教学设计 统编版高中语文选择性必修中册
- Unit6知识点讲解(带练习)课件-人教版八年级英语下册
- 新外研版三年级英语下册期中测试卷(汇编)
- 1-如何做好今年中考语文的复习备考
- 精神病学课件躯体治疗(精神病学)
- FeNO测定及应用演示版课件
- 考试焦虑主题班会课件
- 冀教版五年级下册美术第12课《寓言成语故事多》课件
- 英语演讲Artificial intelligence人工智能课件共课件
- 建设工程防渗漏验收检查表
- 铁皮石斛 组织培养 栽培 试验 实验
评论
0/150
提交评论