




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦定理教学重点:正弦定理教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即= 2. 三角形面积公式 在任意斜ABC当中SABC=3.正弦定理的推论:=2R(R为ABC外接圆半径)4.正弦定理解三角形1)已知两角和任意一边,求其它两边和一角;2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。3)已知a, b和A, 用正弦定理求B时的各种情况:(多解情况)若A为锐角时:若A为直角或钝角时:1、已知中,则角等于 ( D)A B C D2、ABC的内角A、B、C所对的边分别为a、b、c,若sinA=,b=sinB,则a等于( D )A3 B C D1. 在中,若,则一定是( )A、等腰三角形B、直角三角形C、等腰直角三角形D、等腰或直角三角形解析: 3.在ABC中,C=,则的最大值是_.解析 在ABC中,C=, ,时,取得最大值。4. 若中,则角C的大小是_解析7.在ABC中,已知,试判断ABC的形状。解:由正弦定理得:,。所以由可得:,即:。又已知,所以,所以,即,因而。故由得:,。所以,ABC为等边三角形。在中,是成立的 ( C ) 必要不充分条件 充分不必要条件充要条件 既不充分也不必要条件1.ABC的内角A、B、C的对边分别为a、b、c,若c=,b=,B=120,则 a等于( )A.B.2C.D.答案 D3.下列判断中正确的是( )A.ABC中,a=7,b=14,A=30,有两解B.ABC中,a=30,b=25,A=150,有一解C.ABC中,a=6,b=9,A=45,有两解D.ABC中,b=9,c=10,B=60,无解答案 B4. 在ABC中,若2cosBsinA=sinC,则ABC一定是( )A.等腰直角三角形 B.等腰三角形 C.直角三角形D.等边三角形答案 B10. 在ABC中,已知a=,b=,B=45,求A、C和c.解 B=4590且asinBba,ABC有两解.由正弦定理得sinA= =,则A为60或120.当A=60时,C=180-(A+B)=75,c=.当A=120时,C=180-(A+B)=15,c=.故在ABC中,A=60,C=75,c=或A=120,C=15,c=.12. 在ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.解 方法一 已知等式可化为a2sin(A-B)-sin(A+B)=b2-sin(A+B)-sin(A-B)2a2cosAsinB=2b2cosBsinA由正弦定理可知上式可化为:sin2AcosAsinB=sin2BcosBsinAsinAsinB(sinAcosA-sinBcosB)=0sin2A=sin2B,由02A,2B2得2A=2B或2A=-2B,即A=B或A=-B,ABC为等腰或直角三角形.方法二 同方法一可得2a2cosAsinB=2b2sinAcosB由正、余弦定理,可得a2b= b2a a2(b2+c2-a2)=b2(a2+c2-b2)即(a2-b2)(a2+b2-c2)=0a=b或a2+b2=c2ABC为等腰或直角三角形.2在ABC中,已知B45,c2,b,则A等于()A15 B75 C105 D75或15解析:根据正弦定理 ,sin C.C60或C120,因此A75或A15.答案:D例1已知a、b为ABC的边,A、B分别是a、b的对角,且,求 的值.解:(这是角的关系), (这是边的关系)于是,由合比定理得例2已知ABC中,三边a、b、c所对的角分别是A、B、C,且a、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沧州市人民医院围产期感染防控考核
- 大学课件制作
- 承德市人民医院老年压疮风险评估与预防考核
- 石家庄市中医院视觉模拟评分法规范化操作考核
- 重庆市人民医院耳廓畸形矫正术技能考核
- 北京市中医院循环系统疾病编码考核
- 2025广东郁南县兴华产业投资有限公司、郁南县兴瑞产业投资有限公司招聘员工6人考前自测高频考点模拟试题(含答案详解)
- 2025第二人民医院ICU患者镇痛镇静考核
- 2025贵州省体育局直属事业单位第十三届贵州人才博览会引才1人模拟试卷及一套完整答案详解
- 上海市中医院非血管介入资格认证
- 武汉天河机场招聘笔试题及答案
- 湿陷性黄土湿陷量计算表
- 在课堂教学中寻找发展学生科学思维的生长点课件
- 因离婚给孩子申请改姓协议书
- 大众蔚揽保养手册
- 用车登记表(标准模版)
- 中共一大会址
- 01第一章-稻谷的加工汇总课件
- 六年级LOGO小海龟编程
- 驻足思考-瞬间整理思路并有力表达
- 【QC成果】提高预制梁吊装一次就位合格率2018
评论
0/150
提交评论