曲边梯形面积及汽车行驶的路程.ppt_第1页
曲边梯形面积及汽车行驶的路程.ppt_第2页
曲边梯形面积及汽车行驶的路程.ppt_第3页
曲边梯形面积及汽车行驶的路程.ppt_第4页
曲边梯形面积及汽车行驶的路程.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.5.1曲边梯形的面积,探究思考,问题1:你能求出下面图形的面积吗?,问题2:第三幅图的面积应该怎么求呢?,曲边梯形,曲边梯形:在直角坐标系中,由连续曲线y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边梯形。,探究思考,如何求曲边梯形的面积?,以直代曲,逼近,y=f(x),用一个矩形的面积A1近似代替曲边梯形的面积A,得,探究思考,用两个矩形的面积近似代替曲边梯形的面积A,得,探究思考,AA1+A2+A3+A4,用四个矩形的面积近似代替曲边梯形的面积A,得,探究思考,将曲边梯形分成n个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,于是曲边梯形的面积A近似为,AA1+A2+An,以直代曲,无限逼近,探究思考,当分点非常多(n非常大)时,可以认为f(x)在小区间上几乎没有变化(或变化非常小),从而可以取小区间内任意一点xi对应的函数值f(xi)作为小矩形一边的长,于是f(xi)x来近似表示小曲边梯形的面积,表示了曲边梯形面积的近似值,探究思考,分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S。,例1.求抛物线y=x2、直线x=1和x轴所围成的曲边梯形的面积。,解:把底边0,1分成n等份,然后在每个分点作底边的垂线,这样曲边三角形被分成n个窄条,用矩形来近似代替,然后把这些小矩形的面积加起来,得到一个近似值:,探究思考,探究思考,因此,我们有理由相信,这个曲边梯形的面积为:,(1)分割,过各区间端点作x轴的垂线,从而得到n个小曲边梯形,他们的面积分别记作,把区间0,1等分成n个小区间:,探究思考,(2)以直代曲,(3)作和,探究思考,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,2,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,观察以下演示,注意当分割加细时,矩形面积的和与曲边梯形面积的关系.,我们还可以从数值上看出这一变化趋势,(4)取极限,当即时,从而有,分割,以直代曲,作和,逼近,一般地,对于曲边梯形,我们也可采用,的方法,求其面积.,1.5.2汽车行驶的路程,探究思考,探究思考,可见:,总结提升:求由连续曲线y=f(x)对应的曲边梯形面积的方法:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论