条件概率与事件的独立性练习.doc_第1页
条件概率与事件的独立性练习.doc_第2页
条件概率与事件的独立性练习.doc_第3页
条件概率与事件的独立性练习.doc_第4页
条件概率与事件的独立性练习.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

条件概率与事件的独立性练习:一、条件概率1已知P(B|A)=,P(A)=,则P(AB)=( )A B. C D.2、一个袋中有9张标有1,2,3,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A. B. C. D. 3、在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率一、 事件的独立性实质:P(B|A)=P(B) 。因此,所以P(AB)=P(A)P(B).注意两点:(1)当A与B相互独立时,与、与B、A与之间也是相互独立的;(2)公式可推广到多个相互独立事件。1、典型的串并联电路问题:(1) 如图1,当元件A和B都正常工作时,系统正常工作。如果元件A和B正常工作的概率依次为0.9和0.8,当系统正常工作的概率是多少?(2) 如图2,当元件A和B至少有一个正常工作时,系统正常工作。如果元件A和B正常工作的概率依次为0.9和0.8,当系统正常工作的概率是多少?(3)(2011湖北)如图,用K、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、正常工作的概率依次为09、08、08,则系统正常工作的概率为A0960 B0864 C0720 D05762、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A BC D3、某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若,求随机变量X的分布列。4、红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。()求红队至少两名队员获胜的概率;()用表示红队队员获胜的总盘数,求的分布列。5、本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为每小时收费2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次)。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。()求甲、乙两人所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列.6、乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.()求开始第4次发球时,甲、乙的比分为1比2的概率;()表示开始第4次发球时乙的得分,求的分布列.7、甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.() 求甲获胜的概率;()求投篮结束时甲的投篮次数的分布列。8、某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55.()确定x,y的值,并求顾客一次购物的结算时间X的分布列()若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.9、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;10、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论