图像锐化的目的和意义.doc_第1页
图像锐化的目的和意义.doc_第2页
图像锐化的目的和意义.doc_第3页
图像锐化的目的和意义.doc_第4页
图像锐化的目的和意义.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像锐化的目的和意义图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。 图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。 图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法.锐化的目标实质上是要增强原始图像的高频成分.常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声.为此,在对锐化原理进行深入研究的基础上,提出了先用边缘检测算法检出边缘,然后根据检出的边缘对图像进行高频增强的方法.实验结果表明,该方法有效地解决了图像锐化后的噪声问题 图像的锐化可以在空间域中进行,也可以在频率域中实现。一. 图像信号的锐化过程1. 空间域中锐化图像的目的在空间域中进行图像的锐化也成为空间滤波处理,目的又(1) 一是 提取图像中用于认识和识别图像特征的参量,为图像识别准备数据(2) 消除噪声。图像数字化时产生的噪声主要是造成对图像内容的干扰,这用图像的平滑处理。图像数字化时在信号高频区域产生的误差以及设备自身噪声对图像的高频(轮廓特征)干扰同样也是一种噪声,可以用 空间滤波的方法去除。(3) 采用空间滤波的 方法 可以更鲜明地保持图像的 边缘特征,这也是空间滤波 的主要目的,即锐化图像。处理效果 锐化的目的在于使图像中对象轮廓上的像素灰度大的更大,小的更小,但对轮廓外的像素不起作用。由于这一原因,图像的锐化对孤立点或对孤立线条的 边缘增强作用十分明显,但在一定程度上也会对噪声信号产生增强作用。图像锐化处理的主要目的是突出图像中的细节或者增强被模糊了的细节。模糊可能是由于错误操作,或者是由于图像获取方法的固有影响所导致的。例如,当图像的分辨率有限时,所获得的像素值不是一点的亮度,而是周围景物亮度的平均值。这种均值计算使图像变得模糊。因为均值处理的积分相类似,从逻辑角度可以断定,瑞或处理可以用空间微分来完成。锐化处理强度与图像在该点的突变程度有关。这样,图像微分增强了边缘喝其他突变(如噪声)的信息,并削弱了灰度变化缓慢的信息,一般强况下,图像的锐化被用于景物边界的检测与提取。 图像锐化处理主要用于增强图像的边缘及灰度改变部分,图像锐化又空域喝变换域两种处理方法。1. 微分锐化处理在图像平滑化处理中,主要的空域处理是采用邻域平均法,这种方法类似于积分过程,积分的结果使图像的边缘变得模糊了,微分会产生相反的效应,因此微分法是图像锐化的方法之一。微分锐化处理方法最常用的是梯度法。图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使图像的边缘变的清晰。图像銳化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。 为了要把图像中间任何方向伸展的的边缘和轮廓线变得清晰,我们希望对图像的某种运算是各向同性的。可以证明偏导平方和的运算是各向同性的,即:=式中(x,y)是图像旋转前的坐标,是图像旋转后的坐标。梯度运算就是在这个式子的基础上开方得到的。图像(x,y)点的梯度值:g=f-f为了突出物体的边缘,常常采用梯度值的改进算法,将图像各个点的梯度值与某一阈值作比较,如果大于阈值,该像素点的灰度用梯度值表示,否则用一个固定的灰度值表示。 我们在对图像增强的过程中,采用的是一种简单的高频滤波增强方法:G(x,y)= 式中f,g分别为锐化前后的图像,是与扩散效应有关的系数。 表示对图像f进行二次微分的拉普拉斯算子。这表明不模糊的图像可以由模糊的图像减去乘上系数的模糊图像拉普拉斯算子来得到。可以用下面的模板H=1,4,1,4,-20,4,1,4,1来近似。在具体实现时,上述模板H中的各个系数可以改变, 这个系数的选择也很重要,太大了会使图像的轮廓过冲,太小了则图像锐化不明显。实验表明, 选取2-8之间往往可以达到比较满意的效果。Sobel算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;Laplacian算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。I=imread(cameraman.tif);subplot(2,2,1);imshow(I);title(原始图像);h1=fspecial(sobel);I1=filter2(h1,I);subplot(2,2,2);imshow(I1);title(sobel算子);h2=fspecial(prewitt);I2=filter2(h2,I);subplot(2,2,3);imshow(I2);title(prewitt算子);h3=fspecial(laplacian);I3=filter2(h3,I);subplot(2,2,4);imshow(I3);title(laplacian算子); 1. MATLAB的概况MATLAB是矩阵实验室(MatrixLaboratory)之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。2. MATLAB产生的历史背景在70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库.EISPACK是特征值求解的 FOETRAN程序库,LINPACK是解线性方程的程序库.在当时,这两个程序库代表矩阵运算的最高水平.到70年代后期,身为美国 New Mexico大学计算机系系主任的Cleve Moler,在给学生讲授线性代数课程时,想教学生使用EISPACK和LINPACK程序库,但他发现学生用FORTRAN编写接口程序很费时间,于是他开始自己动手,利用业余时间为学生编写EISPACK和LINPACK的接口程序.Cleve Moler给这个接口程序取名为MATLAB,该名为矩阵(matrix)和实验室(labotatory)两个英文单词的前三个字母的组合.在以后的数年里,MATLAB在多所大学里作为教学辅助软件使用,并作为面向大众的免费软件广为流传.在当今30多个数学类科技应用软件中,就软件数学处理的原始内核而言,可分为两大类.一类是数值计算型软件,如MATLAB,Xmath, Gauss等, 这类软件长于数值计算,对处理大批数据效率高;另一类是数学分析型软件,Mathematica,Maple等,这类软件以符号计算见长,能给出解析解和任意精确解,其缺点是处理大量数据时效率较低.MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图示能力的基础上,又率先在专业水平上开拓了其符号计算,文字处理,可视化建模和实时控制能力,开发了适合多学科,多部门要求的新一代科技应用软件MATLAB.经过多年的国际竞争, MATLAB以经占据了数值软件市场的主导地位.在MATLAB进入市场前,国际上的许多软件包都是直接以FORTRANC语言等编程语言开发的。这种软件的缺点是使用面窄,接口简陋,程序结构不开放以及没有标准的基库,很难适应各学科的最新发展,因而很难推广。MATLAB的出现,为各国科学家开发学科软件提供了新的基础。在MATLAB问世不久的80年代中期,原先控制领域里的一些软件包纷纷被淘汰或在MATLAB上重建。MathWorks 公司1993年推出了MATLAB 4。0版,1995年推出4。2C版(for win3。X)1997年推出5。0版。1999年推出5。3版。MATLAB 5。X较MATLAB 4。X无论是界面还是内容都有长足的进展,其帮助信息采用超文本格式和PDF格式,在Netscape 3。0或IE 4。0及以上版本,Acrobat Reader中可以方便地浏览。时至今日,经过MathWorks公司的不断完善,MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。在国外, MATLAB已经经受了多年考验。在欧美等高校,MATLAB已经成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具;成为攻读学位的大学生,硕士生,博士生必须掌握的基本技能。在设计研究单位和工业部门,MATLAB被广泛用于科学研究和解决各种具体问题。在国内,特别是工程界,MATLAB一定会盛行起来。可以说,无论你从事工程方面的哪个学科,都能在MATLAB里找到合适的功能。2MATLAB的语言特点一种语言之所以能如此迅速地普及,显示出如此旺盛的生命力,是由于它有着不同于其他语言的特点,正如同FORTRAN和C等高级语言使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称作为第四代计算机语言的MATLAB,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来。 MATLAB最突出的特点就是简洁。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和 FORTRAN语言的冗长代码。MATLAB给用户带来的是最直观,最简洁的程序开发环境。以下简单介绍一下MATLAB的主要特点。语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。可以说,用MATLAB进行科技开发是站在专家的肩膀上。具有 FORTRAN和C等高级语言知识的读者可能已经注意到,如果用FORTRAN或C语言去编写程序,尤其当涉及矩阵运算和画图时,编程会很麻烦。例如,如果用户想求解一个线性代数方程,就得编写一个程序块读入数据,然后再使用一种求解线性方程的算法(例如追赶法)编写一个程序块来求解方程,最后再输出计算结果。在求解过程中,最麻烦的要算第二部分。解线性方程的麻烦在于要对矩阵的元素作循环,选择稳定的算法以及代码的调试动不容易。即使有部分源代码,用户也会感到麻烦,且不能保证运算的稳定性。解线性方程的程序用FORTRAN和C这样的高级语言编写,至少需要四百多行,调试这种几百行的计算程序可以说很困难。以下用MATLAB编写以上两个小程序的具体过程。Sobel算子索贝尔算子是一组方向算子,从不同的方向检测边缘。索贝尔算子不是简单求平均再差分,而是加强了中心像素上下左右四个方向像素的权重,运算结果是一幅边缘图像。Sobel算子通常对灰度渐变和噪声较多的图像处理得较好。在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的 。与 和 相比,Sobel算子对于象素的位置的影响做了加权,因此效果更好。Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel算子的处理方法。 由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的Laplacian算子检测图像的边缘纹理等细节信息,然后以适当比例线性叠加原始图像和细节信息,从而完成图像增强。不同增强方法的比较试验表明,基于Laplacian算子的图像增强方法既能增强图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论