毕业设计论文 煤矿主井提升设备选型设计.doc_第1页
毕业设计论文 煤矿主井提升设备选型设计.doc_第2页
毕业设计论文 煤矿主井提升设备选型设计.doc_第3页
毕业设计论文 煤矿主井提升设备选型设计.doc_第4页
毕业设计论文 煤矿主井提升设备选型设计.doc_第5页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图书分类号: 密 级: 毕业设计(论文) 大龙煤矿主井提升设备选型设计 (单绳缠绕式提升机) HOISTING EQUIPMENT SELECTION AND DESIGN FOR DALONG MINE (SINGLE ROPE WINDING HOIST) 学生姓名 学院名称 专业名称 指导教师 2010 年5 月20 日 I 摘要 矿井提升设备是沿井筒提升煤炭、矸石,升降人员和设备,下放材料的大型机械, 是联系矿井上下的“咽喉” 。 本设计主要对矿井主井生产所用的提升设备进行的一次合理选型。通过已知条件合 理计算选出箕斗、钢丝绳、提升机、天轮、电动机等设备。结合大龙煤矿矿井的具体条 件,保证提升设备在选型和运转两个方面都是合理的,即根据合理的选型计算保证矿井 提升设备具有安全性和经济性。在矿井提升中,应根据年产量选出箕斗规格;根据单次 提升量的运算,选用合适的钢丝绳;通过对卷筒直径和宽度的计算选出提升机型号。 在设计中,必须掌握矿井提升设备的结构、工作原理、性能特点、选择设计、运转 理论等方面的知识,以做到选型合理,正确使用与维护,使之安全、可靠、经济的运转。 关键词关键词 双卷筒;单绳缠绕式提升机;钢丝绳;天轮 II Abstract Mine Hoisting equipment is used to lift the coal mine, waste rock, person and equipment and set down material along the shaft ,is a throat.contacted of mine up and down. This design primarily give the lifting devices a reasonable selection on mine production.Rational calculation by known conditions a skip, wire rope, hoist, hoisting sheave ,motor, and other equipment is elected.Combined with Da Long coal mine of specific conditions,the design should ensure a better device selection and operation of the two aspect.According to the justification of the selection and calculation ensure mine hoisting equipment with security and economics.In the design, skip should by the annual output ;according to the amount of single upgrade,the appropriate rope can be elected; through reel diameter and width calculations elect hoist model. In the design, you must have knowledge of the mine hoisting structure, working principle, performance characteristics, design selecting, operation theory to achieve a reasonable selection of the proper use and maintenance, so that the mine hoisting is safe, reliable and economical operation. Keywords Double drum single rope winding hoists rope hoisting sheave 徐州工程学院毕业设计(论文 ) I 目目 录录 1 绪论.1 1.1 设计要求.1 1.2 矿井提升设备发展概述.1 2 煤矿主井提升设备初步分析.3 2.1 煤矿主井提升系统结构.3 2.2 煤矿主井提升主要设备初步选择.4 2.2.1 提升容器 .4 2.2.2 提升钢丝绳.4 2.2.3 单绳缠绕式提升机 .5 2.2.4 单绳缠绕式提升机提升原理.7 3 煤矿主井提升系统选型设计.8 3.1 箕斗的选择设计.8 3.1.1 箕斗容量计算.8 3.1.2 选用箕斗结构及卸载原理.10 3.2 提升钢丝绳的选择.11 3.3 天轮的选择计算.14 3.4 煤矿提升机选型计算.16 3.4.1 提升机卷筒直径的确定.16 3.4.2 提升机卷筒宽度的确定.17 3.4.3 校核计算.19 4 煤矿主井提升设备安装位置计算 .20 4.1 提升机与井筒的相对位置安装计算.20 4.1.1 提升机安装地点的选择原则.20 4.1.2 提升机与井筒的相对位置计算.20 5 矿井提升机的拖动装置 .25 5.1 提升机拖动装置选择依据.25 5.2 电动机初步选择.25 5.2.1 电动机的计算转速.25 5.2.2 电动机的功率估算.26 6 提升设备的运动学及动力学计算 .28 6.1 提升运动学分析.28 6.1.1 提升速度图分析.28 6.1.2 运动学相关计算.28 徐州工程学院毕业设计(论文 ) II 6.2 提升动力学分析.32 6.2.1 提升动力学基本动力方程.32 6.2.2 提升动力学相关参数计算.33 6.3 提升工作图.36 7 提升系统相关参数校核及验算 .38 7.1 提升电动机容量校核.38 7.1.1 提升电动机等效容量的计算.38 7.1.2 电动机容量的验算.39 7.2 提升设备的电耗及效率计算.40 结论 .42 致谢 .43 参考文献 .44 附录 .45 附录 1.45 附录 2.58 1 1 绪论 1.1 设计要求 本设计是对大龙煤矿主井进行一次选型设计。大龙煤矿矿井深 460 米,年 产量高达 100 万吨,属于大型煤矿。设计要求根据该矿井深,矿井年产量等原 始参数,进行矿井主井提升设备的选型设计计算。选择出箕斗、提升钢丝绳及 天轮、单绳缠绕式提升机、电动机等,并进行运动学与动力学计算及矿井年产 量验算。煤矿提升设备的选型设计在矿井开发时由为重要,因此在设计中要合 理的选择零部件,在考虑保证煤矿工作安全的同时降低煤矿开发成本,给出最 适合该煤矿的提升设备。 1.2 矿井提升设备发展概述 矿井提升设备是沿井筒提升煤炭、碎石、升降人员和设备,下放材料的大 型机械设备。它沟通矿井上下的纽带。矿井提升设备在矿山生产的全过程中占 有极其重要的地位。其中矿井提升设备中矿山提升机为设备的核心,因此矿山 提升机的优劣关系着整个设备的提升性能。 矿井提升设备早在 800 年前就已经出现,主要形式为畜力提升机。19 世纪, 欧洲率先出现蒸汽机,资本主义国家采用了蒸汽拖动的矿井提升设备。随着时 代的发展,后来又出现了电动机和电力拖动机。由于电力拖动无论在效益上还 是在使用条件上都优于蒸汽拖动,因此电力拖动逐步取代了蒸汽拖动提升机。 随着电动机和电子技术的发展,目前的电力拖动提升机有了很大的发展, 无论是在结构上还是在性能上都与以往原始提升机有了很大的区别。尤其是近 几十年来,微电子和计算机控制技术的迅速发展,使得矿井提升机实现了全自 动运行,可以记录运行参数和各种生产指标以及进行数据综合与处理,使得矿 井提升设备与整个矿井系统紧密结合在一起,联成一个自动运行系统。随着矿 井建设规模的不断扩大,矿井规模已从过去的年产几百万吨级发展到新建矿井 年产千万吨以上,提升设备的单台装机功率也在不断向大型化发展。 从提升设备的结构和品种方面的发展来看,首先出现的是单绳缠绕式圆柱 形单筒提升机。19 世纪八十年代,德国人利用摩擦原理又制造出单绳摩擦式提 升机。这种提升设备特别适合于较深矿井中。以后,随着矿井生产的发展和技 术的进步,缠绕式提升机和摩擦式提升机又各有不同的发展。 缠绕式由单筒发展到双筒,为了适应提升距离增加和节省电能的需求,又 有了圆锥形、圆柱圆锥形、双圆柱圆锥形及单筒可分离式卷筒提升机等不同结 2 构形式。 而摩擦式提升机由原来的单绳发展到多绳摩擦式提升机,提升机的绳数已 可多达 10 余根,最大一次提升量达 50t,最大直径达 6m,绳速达 s/m25 。 事物在不断的发展,矿井提升设备也在不断的发展,其类型、结构等都在 日新月异地向前发展。 3 2 煤矿主井提升设备初步分析 2.1 煤矿主井提升系统结构 大龙煤矿矿井深 460 米,年产量高达 100 万吨,属于大型煤矿。根据设计 要求,该矿井提升系统选用单绳缠绕式提升机系统。单绳缠绕式提升机系统主 要由提升容器、提升钢丝绳、提升机、天轮、井架、装卸载设备及电气设备等 组成。该系统核心部分为单绳缠绕式提升机。煤矿主井提升系统结构图如图 2- 1。 图 2-1 单绳缠绕式提升机箕斗提升系统 1井架 2天轮 3提升机 4箕斗 5钢丝绳 6煤仓 7翻笼 8煤仓 9给煤机 10装载设备 由图 2-1 可知提升容器被钢丝绳连接,钢丝绳通过天轮的支撑和提升机的 带动拉动提升容器的上行和下放。因此煤矿主井提升系统连接矿井上下,保证 煤炭提升正常运转。它主要部件有单绳缠绕式提升机、钢丝绳、提升容器、天 4 轮等。各个部件紧密结合保证了矿井煤矿提升有序进行。 2.2 煤矿主井提升主要设备初步选择 正文请下载下可见。正文请下载下可见。 。 。 。 。 。 5 7 提升系统相关参数校核及验算 7.1 提升电动机容量校核 提升电动机的工作状态属于重复短时工作制,提升电动机工作轴上的功率 不仅每个提升循环有变化,而且在每个循环工作系统中也是变化的。在减速阶 段电动机功率可能降低到零值,而到起动阶段可能达到最高值。 7.1.1 提升电动机等效容量的计算 提升电动机产生的热量与该电动机绕组的电流平方成正比,与通电时间的 一次方成反比。对时间微分,则在无穷小的时间里,电动机绕组发出的热量为: 式 2 dq kI dt (7.1) 当电动机在拖动力矩条件下工作时,那么单个提升循环所产生的热量为:M 1 22 1 0 T d qkI dtkI T 式 (7.2) 式中 d T 提升系统一次工作循环时间; k比例常数; I电动机定子绕组中通过的电流; d I 在等值力矩条件下工作时,提升电动机产生的等值电流。 电动机拖动力矩M和电动机定子的电流有一定的关系,当电动机接入电网 电压不变时,在单位时间内电动机线圈内产生的热量为: dq kMdt 式(7.3) 式中 M电动机轴上的变化力矩。 因此在一次提升的全时间内电动机产生的热量为: 1 0 T qkMdt 式(7.4) 设减速器传动比为效率为,则电动机轴上的旋转力矩与作用在卷筒上 0 i 0 的拖动力在任何瞬间都有下列关系; 6 00 FR M i 式(7.5) 式中 提升电动机在卷筒上的等效力。F 由以上公式可推出提升电动机等值容量: 式 1 2 0 P 1000 T m d jd F dt v T (7.6) 式中 m v 提升系统最大提升速度; j 提升系统效率取 0.85; 对于大龙煤矿有: 63.9 d Ts ; 提升系统等效力考虑到减速阶段减速方式及制动方式,减速阶段在系统 d F 等效力计算时不应计在其中,因此等效力可以按式(7.7)计算: 式 222222 2 00112222 0012 2222 5544 45 223 22 X T FFFFFFFF F dtttt FFFF tt (7.7) 式中 提升系统各初始阶段拖动力() ; i F0 1 2 3 5i 、 提升系统各终止阶段拖动力() ; i F0 1 2 3 5i 、 经计算有: 式 2222 2 0 22 2222 92 116177116062149162143550 3.113.1 22 86007.386007.3*7239.97239.9 16.8 3 3544.77824.514921568316.1 10.510 22 427 10 N X T F dt s (7.8) 提升机等效力为: 式 29 0 427 10 89.098 kN 53.9 X T d d F dt F T (7.9) 电动机容量为 7 式 2 0 1000 16.2 *81.823 1000*0.85 1559.45 x T m d jd F dt v P T kW (7.10) 7.1.2 电动机容量的验算 1)按电动机允许发热条件 式/1.0261 d P P (7.11) 即有 2.6%的备份容量。 2)按正常运行时电动机过负荷能力 式 max 149215 87901.6 1.60.75 =1.8 e F F (7.12) 式中 电动机过负载系数,为 2.4; 电动机额定出力,计算如下: e F 式 m 1000 =100*0.85*1600/16.2 =87901 e P F V N (7.13) 3)在特殊情况下,电动机过负荷能力 式()1.1 (5940048.71 480)32.25 kN tzt FQpH (7.14) 式(7.15) 32.25 0.91.854 87.901 t e F F 式中 t F 过负荷力 考虑到动力的附加系数,取 1 . 1 根据上述三个条件,可知预选电动机容量合格。 8 7.2 提升设备的电耗及效率计算 1.一次提升电耗 式(7.16) 0000111222444 1111 ()()()() 2222 3211.5kN* X T FdtFF tFF tFF tFF t s 式(7.17) 0 3 3 1.02 3600 1.02*16.2*3211*10 3600*0.85*0.93 18.6 10 kW h X T m jd vFdt W 式中 提升电动机效率,为 0.93; d 减速器效率,取 0.85。 j 2.每吨煤电耗及提升设备的年电耗电 1 W n W 式 1 18.6 *1000 5.94 =3131.3kW h / t W W Q (7.18) 式 1 3131.1*205.375 643.91 ns WW A kW (7.19) 3.一次提升有益电耗 y W 式 3 3600 5940*10 *480 3600 7.92 10 kW h t y QgH W (7.20) 4.提升设备的效率 9 式 y 7.92 42.58% 18.6 W W (7.21) 结论 煤矿矿井提升的选型设计是对将要开采的煤矿进行一次提升系统的各个零 部件的选择设计,在现实生活在有很大的意义。系统选型的内容决定了提升系 统的开发成本和煤矿提升效率。因此,在系统选型设计中要做到认真、负责。 通过对煤矿相关数据的计算找出了适合大龙煤矿提升系统的箕斗、钢丝绳、 提升机型号等一系列提升设备。在设计结尾对选出的 2JK-3.5/11.5 单绳缠绕式 提升机进行了运动学和动力学校验,保证了所选的提升机能够稳定、安全的运 行。最好并对该大龙煤矿提升系统进行了年产量校核及验算。 这次设计通过对矿井提升机结构的研究,选出了适合大龙煤矿的单绳缠绕 式提升机。使我对矿井提升机的工作原理和机身结构有了进一步详细的了解和 认识。通过这段时间的设计,使我能更加熟练的运用机械设计方面的有关知识, 更好的运用 Auto CAD 软件,以及查表和阅览专业工具书籍的能力。当然由于能 力有限,有很多不足之处望老师批评指正。 10 致谢 11 参考文献 1 宋鸿尧、丁忠尧.矿山设备设计与计算M.机械工业出版社,1982. 2 周国庆.煤矿安全规程 2010 版Z.国家安全生产监督管理总局,2010. 3 王国键、袁庆国等主编.煤矿用单绳缠绕式矿井提升机 安全检验规范Z.国家安全生 产监督管理,2007. 4 成大先主编.机械设计手册.单行本机械传动M.北京:化学工业出版社.2004. 5 刘庶民.机械改造的思路与实用技术M.北京.机械工业出版社. 6 席伟光、杨光、李波.机械设计课程设计D.北京:高等教育出版社.2003. 7 符伟主编.机构设计学M.长沙:湖南大学出版社.2000. 8 成大先.机械设计手册M化学工业出版社. 9 成大先.机械设计图册M.上海.上海科学技术出版社. 10 成大先.机械设计手册M.北京.机械工业出版社. 12 Hermes,JM.,Bruens,F.P.,The twist variations in a non-non-spin rope of a hoist installationJ,Geologie and Mijnbouw(NW.SER.),19e Jaargang November 12 1957.pp 467-476(in Dutch). 13 McKenzie I.D.,Steel wire hoisting ropes for deep shafts,International Deep Mining Conference: Technical Challenges in Deep Level MiningM,Vol 2.Johannesburg,SAIMM,1900,PP 839-844. 附录 附录 1 英语原文英语原文 Mine Seismology for Rock Engineers An Outline of Required Competencies F. Essrich SiM Mining Consultants (Pty) Ltd., Rep. of South Africa ABSTRACT A decline in the number of dedicated mine seismologists on SA mines over the past decade has created a need for Rock Engineers to acquire a level of competency in mine seismology that would allow them to fulfil a number of functions previously occupied by mine seismologists. The parallel development of user friendly software as a tool for basic seismic data analysis has added to these requirements by offering the non-specialist user an opportunity to carry out various forms of seismic data 13 analysis. A further influence arises from the fact that seismology services are now outsourced on many mines, leaving rock engineering departments with the responsibility to control seismology contracts and liaise with suppliers, which adds managerial functions to their role in an already technically demanding field. This paper investigates the new role embraced by rock engineers on seismically active mines and suggests an outline of training contents that is able to provide the knowledge and skills required. The author has presented training courses with contents similar to those outlined here to rock engineering consultancies and mining houses in South Africa. 1 .Introduction 1.1 Mine Seismologists in South Africa The development of digital seismic systems in the early 1990s and their installation on rock burst prone mines led to a proliferation of seismic data and the employment of specialised personnel in the field of mine seismology. Around 1996 the gold mining sector in South Africa had 24 mine seismologists to manage seismic systems, analyse and evaluate data and supply relevant information to mainly rock engineers, production personnel and mine management. Mine seismologist can be broadly defined as follows: Any person, irrespective of background and formal training, whose sole responsibility is the management of seismic systems and / or the analysis and evaluation of seismic data originating from mining operations. Mine seismologists were, with the exception of two corporate seismologists, employed by the mine and integrated into the mines rock mechanics departments. This setup - considering seismology part of rock engineering - has developed from the perception that seismic information is best utilised in the department responsible for mine layout and support design. It ignores the fact that, academically, seismology forms part of geophysics, which is in some countries considered part of the geology discipline (USA) and in others part of the science of physics (Germany and France). Instead of being integrated with rock engineering, mine seismologists could have joined the prospecting divisions of mining houses and then be seconded to mines as the need arises. This would have opened up more career prospects and may have retained some of the seismologists in the field, preventing the exodus that took place in the second half of the 1990s. By mid 2001 AngloGoldLtd. (now AngloGold-Ashanti) had lost all of its mine seismologists bar one on corporate level. Out of the original 24, eight changed their working field and four left the country. Gold Fields Ltd. retained three 14 of its six experts, plus one on corporate level. Of those leaving the mines, six individuals joined existing or opened up their own consultancies, all of which are still in business today, three years later. By mid 2004, the number of mine-based and employed seismologists stood at four, only one of which is on a mine not previously served in this way. The number of individuals in consultancies has recently increased to ten due to demand by Harmony GM Co. Ltd. Generally speaking, consultancies have taken over the role of service providers in the field, operating seismic networks, managing the gathered data and analy sing and evaluating data for most rock burst prone mines. In this environment mine employed rock engineers become primary customers of seismology services. They are in charge of controlling the contracts with service providers, but also carrying out basic analysis of seismic data with specialized software tools that are A closer look at the various functions executed during seismic data interpretation reveals requirements for senior rock engineering personnel whose responsibilities include seismology related tasks. There are four discernible task groups that rock engineers have to cover in such an environment: 1) Input into mine planning: Design bracket pillars for seismically active structures; optimal face layout and mining sequence, production rate and face configuration to minimise seismic energy emission; optimal placement of stability pillar and their dimensions. 2) Support systems design, Evaluate rock burst information and peak ground motion estimates to recommend excavation support patterns for dynamic oading conditions. 3) Hazard identification, Correlate trends and patterns in seismicity with information from other disciplines (geology, production, rockmechanics) for detection of potentially hazardous developments. 4) Contract management, Liaison with suppliers; reviews and audits, quality control and other functions required to administer contracts with seismic service suppliers. . The first three points require a basic appreciation of mine seismology issues and an ability to apply such knowledge. Where it can contribute to safer mining environments seismology provides meaningful answers to relevant questions. Rock engineers need to be able to ask the right questions and fully comprehend the answers. The last point assumes sufficient knowledge of seismic data quality and basic analysis methods to on duct audits and evaluate various aspects of supplier service delivery. The following outlines not only essential considerations, but also explains some of the 15 tools that are currently available for lay users. 1.2 Mine Seismology: User-Friendly Tools Some of the first MS-WINDOWS based software codes for seismic data analysis on South African mines were developed between 1993 and 1998, A group of AngloGold (then Anglo American) specialists serving mines in its Vaal River Operations developed SEISDBS, which was intended for data base administration and data analysis of previously collected raw data. SEISDBS used data exported from ISS International seismic systems (van derMerwe, 1998). The other WIN-based package originated from CSIR-Miningtek for operation of their commercial PRISM system, a digital seismic system for mines developed together with M relevant feedback functions More important for rock engineers than detailed technical knowledge is the understanding of seismic data evaluation as a process, i.e. the transformation of raw data with the help of tools and methods into useful seismic information that can be applied to solve rock related problems. The co-operation of recipients of seismic information with network suppliers and those conducting data analysis and evaluation is essential for a successful management of seismic risks. Customer feedback to 17 seismologists in charge of the core process and the cores feedback to the input side ensure continued exchange and improvement of the overall process (Figure 1). Rock engineering practitioners and production personnel need to formulate their requirements in terms of information type and communication intervals; and the process core needs to be able to deter mine inputs (tools, methods, data, skills etc.) to enable provision of th

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论