2019高考数学二轮复习_专题二 数列 第2讲 数列求和及综合应用课件_第1页
2019高考数学二轮复习_专题二 数列 第2讲 数列求和及综合应用课件_第2页
2019高考数学二轮复习_专题二 数列 第2讲 数列求和及综合应用课件_第3页
2019高考数学二轮复习_专题二 数列 第2讲 数列求和及综合应用课件_第4页
2019高考数学二轮复习_专题二 数列 第2讲 数列求和及综合应用课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲数列求和及综合应用,高考定位1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.,解(1)因为a13a2(2n1)an2n,故当n2时,a13a2(2n3)an12(n1),,真题感悟,又S2n1bnbn1,bn10,所以bn2n1.,考点整合,2.数列求和,3.数列与函数、不等式的交汇,数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出Sn的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题、不等关系或恒成立问题.,解(1)因为an5Sn1,nN*,所以an15Sn11,,(2)bn1log2|an|2n1,数列bn的前n项和Tnn2,,因此An是单调递增数列,,探究提高1.给出Sn与an的递推关系求an,常用思路是:一是利用SnSn1an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.2.形如an1panq(p1,q0),可构造一个新的等比数列.,(1)解2(Sn1)(n3)an,当n2时,2(Sn11)(n2)an1,得,(n1)an(n2)an1,,热点二数列的求和考法1分组转化求和【例21】(2018合肥质检)已知等差数列an的前n项和为Sn,且满足S424,S763.(1)求数列an的通项公式;(2)若bn2an(1)nan,求数列bn的前n项和Tn.,因此an的通项公式an2n1.(2)bn2an(1)nan22n1(1)n(2n1)24n(1)n(2n1),,探究提高1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n的奇偶进行讨论.最后再验证是否可以合并为一个表达式.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.,(1)证明Sn2n25n,当n2时,anSnSn14n3.又当n1时,a1S17也满足an4n3.故an4n3(nN*).,数列3an是公比为81的等比数列.,(2)解bn4n27n,,探究提高1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.,解(1)设等比数列an的公比为q(q0),,所以ana1qn13n.(2)由(1)得bnlog332n12n1,,解(1)设an的公差为d,由题设,解之得a11,且d1.因此ann.,探究提高1.一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列bn的公比,然后作差求解.2.在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“SnqSn”的表达式.,解(1)由题意知,当n2时,anSnSn16n5.当n1时,a1S111,符合上式.所以an6n5.设数列bn的公差为d,,所以bn3n1.,又Tnc1c2cn,得Tn3222323(n1)2n1,2Tn3223324(n1)2n2.两式作差,得Tn322223242n1(n1)2n2,所以Tn3n2n2.,an1f(an),且a11.an1an2则an1an2,因此数列an是公差为2,首项为1的等差数列.an12(n1)2n1.,等比数列bn中,b1a11,b2a23,q3.bn3n1.,又nN*,n1,或n2故适合条件TnSn的所有n的值为1和2.,探究提高1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.,解(1)由已知Sn2ana1,有anSnSn12an2an1(n2),即an2an1(n2).从而a22a1,a32a24a1.又因为a1,a21,a3成等差数列,即a1a32(a21),所以a14a12(2a11),解得a12,所以数列an是首项为2,公比为2的等比数列,故an2n.,即2n1000,又nN*,因为2951210001024210,所以n10,,1.错位相减法的关注点,(1)适用题型:等差数列an乘以等比数列bn对应项得到的数列anbn求和.(2)步骤:求和时先乘以数列bn的公比.把两个和的形式错

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论