![高等代数考研复习[多项式].ppt_第1页](http://file.renrendoc.com/FileRoot1/2019-12/5/19a941aa-8475-4223-b754-2eba6ad1352c/19a941aa-8475-4223-b754-2eba6ad1352c1.gif)
![高等代数考研复习[多项式].ppt_第2页](http://file.renrendoc.com/FileRoot1/2019-12/5/19a941aa-8475-4223-b754-2eba6ad1352c/19a941aa-8475-4223-b754-2eba6ad1352c2.gif)
![高等代数考研复习[多项式].ppt_第3页](http://file.renrendoc.com/FileRoot1/2019-12/5/19a941aa-8475-4223-b754-2eba6ad1352c/19a941aa-8475-4223-b754-2eba6ad1352c3.gif)
![高等代数考研复习[多项式].ppt_第4页](http://file.renrendoc.com/FileRoot1/2019-12/5/19a941aa-8475-4223-b754-2eba6ad1352c/19a941aa-8475-4223-b754-2eba6ad1352c4.gif)
![高等代数考研复习[多项式].ppt_第5页](http://file.renrendoc.com/FileRoot1/2019-12/5/19a941aa-8475-4223-b754-2eba6ad1352c/19a941aa-8475-4223-b754-2eba6ad1352c5.gif)
已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等代数考研复习第五章多项式,2013年8月,第五章多项式,多项式理论是古典代数的主要内容.多项式的研究,源于“代数方程求解”,是最古老的数学问题之一.多项式理论是高等代数中较为独立的部分,本章复习内容分为三个部分:(1)多项式的整除及最大公因式(2)多项式的因式分解与重因式(3)常见数域上的因式分解问题,1.多项式的整除及最大公因式,1.1多项式的有关概念形如的表达式称为系数在数域P上的一元n次多项式,记称为多项式的次数.当n=0时且称为零次多项式,当时称为零多项式,零多项式不定义次数.次数公式:,多项式的相等:两个多项式相等当且仅当它们的次数相等,且同次项的系数相等.多项式的运算:多项式可以进行加法、乘法运算并满足交换律、结合律.乘法满足消去律即,若则1.2带余除法定理对任意的则一定存在使得且或,这里称为商式,称为余式.余数定理:当时有,除所得余式为1.3多项式的整除(1)定义:对于多项式若存在多项式使得则称整除记为的充分必要条件为:,当时称为多项式的根.(2)性质:a)b)且则c)且则d)若则多项式的整除与带余除法定理不因系数域的扩大而改变.,题型:1)带余除法方法与综合除法例1设求除的商及余式.例2求除以的余式.例3将按的方幂展开.2)整除的应用例4确定m、p的值,使,例5证明:例6如果证明:例7若问是否有例8证明:如果则的根只能是零或单位根.,1.4最大公因式1)定义:对任意多项式称为的一个最大公因式,如果:a)b)若是的任意公因式,都有表示首项系数为1的的最大公因式.,2)最大公因式存在定理:对任意多项式一定存在他们的最大公因式并且3)最大公因式求法-辗转相除法依据:当最后余数为零时,上一次除法的余式为最大公因式.,例求多项式的最大公因式,并且将最大公因式表示为的一个组合.1.5多项式的互素1)定义:若则称是互素的.2)互素的判别定理:互素的充分必要条件是:存在多项式使得,3)互素的性质:a)若且则b)若且则c)若则推论:若例1证明:,例2设且证明:例3设不全为零,证明:例4如果证明:,例5证明:,能整除,的充分必要条件是:n是偶数.,2.多项式的因式分解与重因式2.1不可约多项式1)定义:数域P上一个次数的多项式如果不能表成数域P上的两个次数比次数低的多项式的乘积,称为P上的不可约多项式.2)性质:a)一次多项式一定是不可约多项式.b)是不可约多项式,则它的因式只有非零常数和,c)若是P上的不可约多项式,对任意的必有或d)是P上的不可约多项式,若则或3)不同数域上的不可约多项式类型a)在复数域上,不可约多项式只能是一次多项式.b)在实数域上,不可约多项式只能是一次多项式或判别式小于零的二次多项式.,c)在有理数域上存在任意次的不可约多项式,如在有理数域上不可约.2.2多项式因式分解定理数域P上每个次数的多项式都可以唯一地分解成数域P上一些不可约多项式的乘积.(定理只具有理论意义!)标准分解式:数域P上每个次数的多项式都可以分解成,2)利用标准分解式可求两个多项式的最大公因式.例已知,求,2.3重因式及多项式的根1)重因式的定义:设是数域P上的不可约多项式,如果但是则称是的一个k重因式.当k=1时,称为单因式,k1时,称为重因式.2)重根:若但则称是的k重根.重因式依赖于数域.多项式有k重因式,不一定有k重根;反之,多项式有k重根必有k重因式!,3)重因式的性质a)如果不可约多项式是的k重因式,那么也是的k-1重因式.反之不真,且的单因式不是的因式.例如b)如果是的k重因式,那么也是的因式,但不是的因式.c)是的重因式的充分必要条件是:,是的公因式.即d)设的标准分解式为则即它与有完全相同的不可约因式.,题型分析:这部分题目主要是对重因式与重根概念与性质的应用,只有深刻理解概念与性质,才可能处理好这些问题!例1求有重因式的条件,并确定重因式.,例2已知试确定p的值,使有重根,并求根.,例3证明:没有重根.,例4,如果a是,的一个k重因式,证明:a是,的一个k+3重因式。,例5,证明:,例6,当正整数n取何值时,都有,例7,设,若,那么,例7的应用,设,为n次复系数多项式,且,证明:,有n+1重零根.,例8证明:,设,是首项系数为1且次数大于,零的多项式.那么是某一不可约多项式的方幂的充分必要条件是:,必有,或对某一正整数m,有,例9设,都是次数不大于n-2,的式系数多项式,证明:对任意数,都有,3常见数域上多项式的因式分解问题,3.1复数域上的因式分解问题,1)代数学基本定理:每个次数大于等于1的复系数多项式在复数域上有一根.,2)复系数多项式因式分解定理:每个次数大于等于1的的复多项式在C上可以唯一地分解为一次因式的乘积.,3.2实数域上的因式分解问题,1)实系数多项式虚根成对定理:实系数一元多项式如果有虚根则也是这个多项式的根.,2)实系数多项式因式分解定理:每个次数大于等于1的的实多项式在R上可以唯一地分解为一次因式与二次不可约因式的乘积.,3.3有理数域上的因式分解,2)本原多项式:系数没有异于的整系数多项式.,1)任一有理系数多项式总可以表示成一个有理数域一个整系数多项式的乘积.,3)如果一个非零的整系数多项式能够分解成两个有理系数多项式的乘积,那么它一定能分解成两个整系数多项式的乘积.,4)整多项式有理根存在判别定理:设整系数多项式,有有理根,则,特别,若,则多项式只有整数根.,5)整多项式不可约判别法:(艾森斯坦因判别法),设,是整系数多项式,如果存在一个素数p,使得,a),b),c),则多项式在Q上不可约.,题型分析:1)特殊多项式的因式分解;,2)有理根判定;,3)可约性判定。,例1,(1)将,分别在C与R上因式分解.,(2)求,在C与R上的,标准分解式.,例2设a为实数,证明:,最多只有一个实根(重根只算一个).,例3设,其中a,b是整数,试求全部的a,b使得,有公共的有理根,并求出相应的有理根.,例4设,是整系数多项式,,如果,均为奇数,且,至少有一个,奇数,证明无有理根.,例5判别,在Q上的可约性.,例6判别,在Q上的可约性.,例7求所有整数m,使得,在Q上可约。,例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师心理健康维护体系构建
- 中班健康教案课件我能行
- 中班健康我懂防晒课件
- 基金市场中的数据驱动收益预测模型-洞察及研究
- 2025年Ch3Ch3国际货物买卖合同国际贸易术语解释与合同条款
- 2025版数据中心机房租赁及托管服务合同规范
- 2025版grc构件定制设计、生产、安装一体化服务合同
- 2025版GRG装饰施工安全管理及质量保障合同
- 数据驱动便利店顾客忠诚度提升策略-洞察及研究
- 磁共振考试题库及答案
- 驾驶员行为规范管理制度
- (高清版)JTG D81-2017 公路交通安全设施设计规范
- 《锅炉水介质检验导则标准-征求意见稿》
- 声环境质量自动监测系统质量保证及质量控制技术规范
- 2023年阳江市阳东区教育局招聘事业编制教师考试真题
- 利用隐私保护技术实现网络爬虫安全抓取
- 成本会计岗位竞聘稿
- 2024年新版消防设施操作员初级考试题库(含答案)
- 养老院安全生产培训
- 国开电大行政管理专科《政治学原理》期末考试总题库2024版
- 美容与整形外科学基础
评论
0/150
提交评论